磁性纳米结构的可控生长与磁性调控 成昭华

中国科学院物理研究所磁学国家重点实验室

特征物理长度

Exchange-spring magnets

н

典型永磁材料性能实验与理论比较

Fig. 2.15. Progress in improving (*BH*)_{max} over the last century. The shaded region covers hypothetical FeCo-based alloys, which are magnetically hardened by additives X.

Self-assembly (particles)

J. Phys. D: Appl. Phys. 41 (2008) 093001 (20pp)

TOPICAL REVIEW

The discovery, development and future of GMR: The Nobel Prize 2007

Sarah M Thompson

• 维度与磁性的关系

宏观量子效应和量子隧穿

超高密度磁存储与超顺磁极限

巨大磁矩与磁各向异性 \mathbf{O}

Large Magnetic Anisotropy of a Single Atomic Spin Embedded in a Surface Molecular Network

Cyrus F. Hirjibehedin,¹ Chiung-Yuan Lin,^{1,2} Alexander F. Otte,^{1,3} Markus Ternes,^{1,4} Christopher P. Lutz,¹ Barbara A. Jones,¹ Andreas J. Heinrich¹

www.sciencemag.org SCIENCE VOL 317 31 AUGUST 2007

磁性纳米结构与磁共振 实验条件 单晶生长炉(2002) 电化学实验室(**2003)** MBE/SPM/SMOKE/MS(2004)

穆斯堡尔谱仪 (2003)

电子自旋共振(2006)

磁性纳米结构与磁共振

·MnSi磁性半导体超薄膜可控生长和磁性调控

•磁性纳米线的磁各向异性调控

MnSi磁性半导体超薄膜的可控生长和磁性调控

Si表面外延生长金属和金属Si化物 FeSi, CoSi, NiSi 弱磁或非磁

C. Pfleider, PRB, 55, 8330(1997)

TF.

Epitaxial Growth of metal or metal Silicides on Si

MnSi(111) surface:A=B=0.645nm,C=1.17nm

Ferromagnetic and Metallic Properties of MnSi bulk intermetallic Compounds

FeSi, CoSi, NiSi weak, or non-magnetic

P

State Key Lab. of Magnetism, IPCAS; http://maglab.iphy.ac.cn

C. Pfleider, PRB, 55, 8330(1997)

Scaling Theory of Localization

state

$$g = G/(e^2/\hbar)$$

 $\beta(g) < 0$

$$\beta(g) = \frac{d \ln g}{d \ln L} = \frac{L}{g} \frac{dg}{dL}$$

 $\beta(g) = 1$ Ohm's-law

$$\beta(g) > 0$$
 Extended

Localized state

D.J. Thouless, PRL,39,1167(1977) P.W. Anderson, PRL,43,718(1979)

Experimental Studies of Localization

Cu on glass 11.9nm

L. Van de dries, PRL 46, 565(1981)

Ag/Si(111)-7×7

PRB 45 11430

II. Preferential arrangement and Controllable Growth of Mn Nanodots Uniform Mn nanodots on Si(111)

II. Preferential arrangement and Controllable Growth of Mn Nanodots

Triangular structure

Honeycomb structure

Kinetic Monte Carlo Simulation

III. Fabrication of MnSi ultrathin film on Si(111)

同步辐射 XRD 确定成分和结构

III. Fabrication of MnSi ultrathin film on Si(111)

Growth model of MnSi

139

Fig. 3. Schematic illustrations for explaining the mechanism of Mn silicide formation on the Si(111)-(7×7) surface. \bullet , Mn atoms; \bigcirc , Si atoms.

T. Nagao et al., Surf. Sci. 419(1999), 134

As-deposited

30×30nm²

Post-annealed

1000×1000nm²

厚度度诱导的金属-半导体转变 24ML 6ML 4ML

二维弱局域化

State Key Lab. of Magnetism, IPCAS; http://maglab.iphy.ac.cn

弱巡游电子铁磁性

合成同时具有铁磁性和半导体特性的磁性超薄膜材料

Hall Effect

IV. Magnetic and Magnetotransport Properties of MnSi Ultrathin films

III. Magnetic and Magnetotransport Properties of MnSi Ultrathin films

Enhancement of Tc

应力诱导居里温度的提高

Si(111) dSi-Si=0.384 nm

应力诱导居里温度的提高

Thickness (ML)

State Key Lab. of Magnetism, IPCAS; http://maglab.iphy.ac.cn

80

应力诱导居里温度的提高

图 3.3 奈耳给出的交换能与(a-2r)的关系曲线.

W. Yu et al., PRL, 92,086403(2004)

小结

- 在MnSi 超薄膜中发现维度诱导的金属 绝缘体 转变。
- 2. 电阻率温度依赖性表明MnSi 超薄膜是一个弱局 域的二维电子系统
- 3. MnSi超薄膜同时具有铁磁性和半导体特性
- 4. 维度调控金属 绝缘体转变现象的发现可为自旋 电子器件研制和应用提供一个新的途径。

磁性纳米线的磁各向异性调控

磁各向异性的重要性

- 1. 低维体系中长程磁有序的来源
- 2. 磁性材料的主要参数
- 高矫顽力
- 高频特性
- 磁记录

磁性纳米线的磁各向异性调控 Long Range Magnetic Order low-dimensional System **Mermin-Wagner Theorem** An infinite *d* dimensional lattice of localized spins cannot have LRO at any finite temperature for d<3 if the effective exchange interactions among spins are isotropic in spin space and of finite range T=0 K, FM LRO, No AFM LRO

FM LRMO at T>0 if

• Anisotropy (exchange,dipolar or single-ion anisotropy)

Dipolar or RKKY interactions

Mermin and Wagner, PRL 17(1966),1133; M. Bander and D.L. Mills, Phys. Rev. B. 38(1988)

Importance of Magnetic anisotropy

•Origin of Long range Magnetic order in low dimensional system

Importance of Magnetic anisotropy

•Strong permanent magnet

Importance of Magnetic anisotropy

Ultrahigh density of magnetic media and superparamagnetism limit

Importance of Magnetic anisotropy •High frequency of magnetic materials

•For cubic symmetry

Natural Resonance frequency

Limit of Snoek

$$f_r = \frac{\gamma K_u}{\pi M_s} \qquad \times \qquad \overline{\mu} = \frac{M_s^2}{3\mu_0 K_u} = \int_r \cdot \overline{\mu} = \frac{\gamma M_s}{3\mu_0}$$

•For in-plane uniaxial anisotropy

Magnetic AnisotropyMagnetocrystalline anisotropy(MCA)

Magnetic AnisotropySurface magnetic anisotropyFe/Cu(100)SRT=5ML

Perpendicular Magnetic Anisotropy Induced by Tetragonal Distortion of FeCo Alloy Films Grown on Pd(001)

A.Winkelmann et al, PRL,96,257206(2006)

Strongly Enhanced Orbital Moment by Reduced Lattice Symmetry and varying Composition of Fe1-xCox Alloy Films

(a)

0.3

0.2

Why chose Fe/Pb/Si(111)

200nm

200nm

Growth at Low temperature for 30 seconds Co

Why chose Fe/Pb/Si(111)

- 1. 直接用Pb基底不容易处理,而Si台阶容易获取和处理
- 2. Fe/Si 形成FeSi 化合物 Fe/Pb/Si
- Fe表面自由能: 2.48J/m², Pb表面自由能: 0.5J/m²
 Fe bcc 2.87A Fe(110) 2.49A
 Pb fcc 4.95A Pb(111) 2.8435A
 OD: "V W" 直接成核模式
 1D: "Step-decoration"

Pb膜上的Fe岛和Fe线

Pb / Si(111) 0.1度斜切 500×500

Pb / Si(111) 4度斜切 500×500

0.84ML Fe islands on Pb (18ML) / Si (200nm × 200nm) **1.27**ML Fe wires on Pb (18ML) / Si (300nm × 300nm)

易磁化方向的确定

Three experimental geometries of SMOKE

Longitudinal

Polar

transverse

磁场与易磁化轴不同角度的磁滞回线

Pb膜面内不同方向的Fe岛磁性

SMOKE 信号 与线成60度角 1.6 ML 300K

SMOKE 信号 与线成90度角 1.6 ML 300K

MBE-Step induced

Uniaxial anisotropy of Fe on Si nanowires/chains

磁共振研究独特性

Short Time Scale

利用电子自旋共振确定磁各向异性

$$\left(\frac{\omega}{\gamma}\right)^2 = \left[H\cos(\varphi - \varphi_H) + 4\pi M_{eff} + \frac{2K_u}{M_s}\cos^2\varphi\right] \times \left[H\cos(\varphi - \varphi_H) + \frac{4K_u}{M_s}\cos 2\varphi\right].$$

Magnetic Anisotropy

Shape anisotropy – Dipolar Interaction

Magnetic Anisotropy

$$K^{\rm eff} = \frac{1}{d} \int_0^d (K^v + K^s \delta(z)) dz$$

小结

- 在低覆盖度时,Fe形成具有分形结构的岛状结构
 ;表现出垂直磁各向异性;
- · 随着覆盖度的增加,在3.3 ML时在室温下可以观察Fe岛的平行于面内的各向同性的SM0KE信号
- Si基底原子台阶诱导的Fe纳米线表现出具有沿着 台阶方向的磁各向异性。

Fe基纳米线阵列的磁各向异性

"<u>纳米线阵列的制备方法</u>

阳极氧化铝 (AAO) 模板法

Fe3Pt nanowires

AAO template

J.H. Gao, Appl. Phys. Lett. 86(2005)232506

形状各向异性

[110]: magnetic easy axis due to shape anisotropy

[100]: magnetic easy axis due to magnetocrystalline anisotropy

Low temperature and Superconducting Magnet for Mössbauer Spectrometer

Applications of In-field Mössbauer Spectroscopy

- Field-induced magnetic phase transition
- Magnetization processes of two phases individually from microscopic scale
- Magnetic anisotropy

Magnetization processes

Intensities of the six lines

The intensity ratio among the six lines is $3:I_{2.5}:1:1:I_{2.5}:3$.

$$I_{2,5} = \frac{4\sin^2\theta}{1+\cos^2\theta}$$

 θ is the angle between Fe moment and γ -ray.

Magnetic shape anisotropy

Mössbauer spectra of Fe nanowire arrays in AAO films at 10 K in various magnetic fields applied perpendicular to the nanowire axis.

Magnetic shape anisotropy

 θ : the angle between Fe moment and γ -ray, $\pi/2 - \theta$: the angle between Fe moment and applied field. $M/M_{s} = \langle \cos(\pi/2 - \theta) \rangle = \langle \sin \theta \rangle$

Magnetic shape anisotropy

$$W = K \sin^2 \theta - \sum^n \mu_{Fe} H_{app} \cos(\frac{\pi}{2} - \theta)$$

 $K \approx 7.3 \times 10^{6} (ergs/cm^{3})$ $K_{1} \approx 5.21 \times 10^{5} (ergs/cm^{3})$ $K \approx 14 K_{1}$

总 结

维度与磁性的关系

纳米磁性的机遇与挑战

自课题组2001年成立以来,得到科技部,基金委,科学院和物 理所的资助和支持,先后有40人为课题组的建设和发展做出了 贡献,在此一并感谢!

MOST
NSFC
CAS
IOP

