

二维狄拉克材料的可控生长 与光电性质研究

彭海琳

北京大学 纳米化学研究中心 北京大学 化学与分子工程学院

2013-09-26

合作者:

北京大学 刘忠范 院士

大连化物所 傅强 研究员 包信和院士 <mark>英国牛津大学</mark> 陈宇林 博士

美国斯坦福大学 沈志勋 教授 张首晟 教授 崔 屹 副教授

Center for Nanochemistry Energy Nanomaterials & Devices Group

"Star Nanomaterials" in the last 30 years

Two-Dimensional Crystal Family

- Layered and anisotropic structure; strong in-plane bonding; weak interlayer van der Waals bonding
- Large variety of electronic properties

Gra	ohene	Bi ₂ Se ₃	SnSe	In ₂ Se ₃	MoS_2	WSe ₂	GaSe	h-BN	mica	
SC / meta	SC / metal topological insulator				semiconductor			insulator		
Bandgap (ev)	0	0.3	1.0	1.2	1.3	1.5	2.0	5.9		

• Properties of 2D crystals are very different from their 3D counterparts

Electronic band structures

Parabolic type band structure

Dirac cone type:

linear energy-momentum "relativistic" dispersion described by the massless Dirac Hamiltonian

2D Dirac Materials

狄拉克材料(Dirac费米子系统) Dirac锥形能带结构:能量-动量线性关系

Topological Insulators and Their Applications

Robust, dissipationless spin current generated at surfaces

3D TI: Bi_xSb_{1-x} Bi_2Se_3 , Bi_2Te_3 , Sb_2Te_3 Bi_2Se_2Te , Bi_2SeTe_2 , $(Bi_xSb_{1-x})_2Te_3$ TIBiTe₂, TIBiSe₂, TIBiS₂, TISbTe₂, TISbSe₂ LuPtSb, LuPdBi, YPtBi, CePtBi, LaPtBi

(layered crystal structure) (Dirac band structure)

Topological Insulators and Their Applications

- Fundamental: quantum anomalous Hall effect, Majorana fermions ...
- Applications: information technology, energy, catalysis ...

topological insulator: star material

Nature 2010, 466, 15 July

CHARGING UP

The number of papers published on topological insulators has grown rapidly over the past few years.

2D Dirac Material — Calling all chemists

Nature Nanotechnology 3, 10 - 11 (2008)

GRAPHENE

Calling all chemists

Rod Ruoff

is in the Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.

nature chemistry

PERSPECTIVE

Yi Cui*, Nature Chemistry 2011, 3, 845

Opportunities in chemistry and materials science for topological insulators and their nanostructures

TOPOLOGICAL INSULATORS

Chemists join in

Topological insulators have generated much interest in condensed-matter physics. The synthesis and characterization of $Bi_{14}Rh_3I_9$, a so-called weak topological insulator, demonstrates that chemists also have much to offer to the field.

Robert J. Cava Nature Materials | VOL 12 | MAY 2013

Our Approach to Study Topological Insulators

Surface states are overwhelmed by unwanted bulk carriers.

Issues:

- Surface state vs. bulk state
- High-quality materials
- Transport

2D nanostructures

nanoribbon, nanoplate, nanosheet,...

• Large surface-to-volume ratio

- Excellent transport geometry
- Highly tunable chemical potential (doping, gating)

Production of 2D Layered Crystals

Top-down

- Micromechanical exfoliation
- Liquid-phase exfoliation (ultrasonic, ion/molecule insertion)

J. N. Coleman, et al. Science 331, 568 (2011)

Bottom-up

- Liquid-phase synthesis
- Vapor-phase synthesis

CVD of graphene MBE of Bi_2Se_3 R. Ruoff, *Science* (2009) QK Xue, et al. *Nat. Phys.* (2010)

Dirac 2D Crystals and their novel optoelectronic devices

Adv. Mater. 2013

JACS 2013, 135, 10926

Growth of 1D/2D Bi₂Se₃ Crystals

• Vapor-liquid-solid (VLS) growth of nanoribbon

vapor deposition system

Thickness range: ~25 -100nm

H. Peng, K. Lai, Y. Cui, et al., arXiv:0908.3314 (2009) *Nature Materials* 9, 225 (2010)

Layered single-crystalline Bi_2Se_3 nanoribbons are synthesized via a gold-catalyzed vapor-liquid-solid growth.

Growth of 2D Crystals

• Vapor-solid (VS) growth of nanoplate

Thickness Range: ~3nm to 15 nm

D. Kong, W. Dang, H. Peng*, ZF Liu, Y. Cui*, et al, Nano Lett. 10, 2245 (2010)

Controlled Growth of 2D Crystals

Koma, A. Thin Solid Films 216, 72 (1992) Lattice matching condition is drastically relaxed

Bi₂X₃/graphene 2D structure

W. Dang, H. Peng, Z.F. Liu, et al., *Nano Lett.* 10, 2870 (2010)
Also see QK Xue, et al. *Nat. Phys.* (2010)

K. Yan. H. Peng, Z. F. Liu, et al., *Nano Lett.* 11, 1106 (2011)

Graphene is a good VDW epitaxy substrate 17

VDW Epitaxy Substrate - Fluorophlogopite Mica

T. Fukuma, *Phys. Rev. Lett.* 104, 016101 (2010) F. Tsui, *Phys. Rev. B* 47, 13648 (1993)

fluorophlogopite mica (氟晶云母) (2D layered material) flat, stable, insulating, transparent, flexible

fluorophlogopite $2KMg_3(AlSi_3O_{10})F_2$ monoclinic structure C2/m space group a =5.308 A, b =9.183 A, c =10.139 A, β = 100.07 pseudohexagonal Z_2O_5 sheets (Z=Si and Al)

Excellent VDW epitaxy substrate

Position and orientation controlled growth

Epitaxy substrate-layered mica (cheap, flat, stable, insulating, transparent, flexible)

Li, Cao, Zheng, Chen, Peng*, Liu*, et al., J. Am. Chem. Soc. 2012, 134, 6132. Highlight in C&EN

Position and orientation controlled growth of 2D Bi₂Se₃

Li, Cao, Zheng, Chen, Peng*, Liu*, et al., J. Am. Chem. Soc. 2012, 134, 6132. Highlight in C&EN20

Position and orientation controlled growth of 2D In₂Se₃

Min Lin, Hailin Peng*, Z.F. Liu*, et al., J. Am. Chem. Soc. 2003, 135, 13274

Center for Nanochemistry Energy Nanomaterials & Devices Group

Transport from Surface States of TI (Bi₂Se₃) Nanoribbon

Periodic magnetoresistance osillations

$\Phi_0 = \Delta B \cdot S = h/e$

- AB effects observed in ring or tube-like geometry, such as mesoscopic conducting rings, hollow cylinders, tube-like 2DEGs, carbon nanotubes.
- The flux quantization results in an oscillation period of the external magnetic field ΔB . $\Delta B \cdot S = \Phi_0$, where $\Phi_0 = h/e$ is the flux quantum, *S* the enclosed cross section.

H. Peng, K. Lai, Y. Cui, et al., Nature Materials 2010, 9, 225. Times of citation > 200

In-plane magnetoresistance in Bi₂Se₃ nanoribbons

Temperature: 2K

H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, XL Qi, SC Zhang, ZX Shen, Y. Cui, Nature Materials 9, 225 (2010)

Aharonov-Bohm (AB) oscillations

Aharonov-Bohm (AB) effects:

An electron beam, split into two alternative paths, can exhibit interference effects when the beams recombine.

The flux quantization results in an oscillation period of the external magnetic field ΔB . $\Delta B \cdot S = \Phi_0$, where $\Phi_0 = h/e$ is the flux quantum, *S* the enclosed cross section.

AB effects have been observed in mesoscopic conducting rings, hollow cylinders, and tube-like 2DEGs

 $\Phi_0 = \Delta B \cdot S; \ \Phi_0 = h/e$

Aharonov, Y. & Bohm, D. Phys. Rev. 115, 485 (1959)

Bachtold, A. Nature 397, 673 (1999)

Aharonov-Bohm oscillation from surface states

 $S = w \cdot t = 6.6 \times 10^{-15} \text{ m}^2$

fully coverage of 2D coherent electron state on the entire surface

H. Peng, K. Lai, Y. Cui, et al., Nature Materials 9, 225 (2010)

Topological Insulator 2D Nanostructures for Flexible Transparent Electrodes

Metallic surface state: robust, high mobility (1000~ 5000 cm²/Vs)

Metallic surface/edge state always occur at interface, boundary, edge

H. Peng, K. Lai, Y. Cui, et al., *Nature Materials* 9, 225 (2010).

dissipationless interconnects for the conductive paths

k(A-9)

Transparent electrode 拓扑导电薄膜 27

Topological Insulator 2D Nanostructures for Flexible Transparent Electrodes

H. Peng*, et al., *Nature Chemistry 4*, 281 (2012) highlight in *Nature Chemistry, Nature Photonics, PhysOrg.com*, etc.

Transparent Electrodes - Transmittance

Broadband Transparent Electrodes with 2D Grid

Yunfan Guo, Hailin Peng*, et al., Adv. Mater. 2013, in press

Transparent Electrodes - Flexibility

H Peng*, *et al.*, *Nature Chemistry 4*, 281 (2012) highlight in *Nature Chemistry*, *Nature Photonics*, *PhysOrg.com*, etc.

Transparent Electrodes - Flexibility

H Peng*, et al., *Nature Chemistry* 4, 281 (2012) highlight in *Nature Chemistry*, *Nature Photonics*, *PhysOrg.com*, etc.

Transparent Electrodes – Robust Conduction

H. Peng*, et al., Nature Chemistry 2012, 4, 281

Optoelectronic properties of graphene p-n junction

The thinnest p-n junction

m

- ♦ Ultrahigh carrier mobility
- Broadband absorption
- ♦ Hot-carrier multiplication
- Weak electron-phonon coupling
- Tunable thermopower
- Photo-thermoelectric effect

Photo-thermoelectric effect

Potential applications in optoelectronic devices

- broadband and ultrafast photodetector
- high-efficiency photoelectric conversion

Synthesis of graphene p-n junction is challenging

Modulation-doped growth of mosaic graphene p-n junctions

Yan, Wu, Peng*, Jin, Fu, Bao, Liu*, Nature Communications 2012, 3, 1280

Characterizations of mosaic graphene p-n junctions

Yan, Wu, Peng*, Jin, Fu, Bao, Liu*, Nature Communications 2012, 3, 1280

Transport of single crystal graphene p-n junction

mobility of intrinsic graphene: $5000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ mobility of N-doped graphene: $2500 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

Yan, Wu, Peng*, Jin, Fu, Bao, Liu*, *Nature Communications* 2012, *3*, 1280

Photocurrent generation of graphene p-n junction

Yan, Wu, Peng*, Jin, Fu, Bao, Liu*, Nature Communications 2012, 3, 1280

Photocurrent maps at different gate bias

Photoelectric measurement and transfer of p–n junction at different gate bias

Photo-thermoelectric effect

(See Pablo Jarillo-Herrero, *Science* 2011, 4, 648) Yan, Wu, Peng*, Jin, Fu, Bao, Liu*, *Nature Communications* 2012, *3*, 1280

Photoresponses of individual channels and their additions

integration of multiple graphene photodetector channels

cooperative photodetection

Yan, Wu, Peng*, Jin, Fu, Bao, Liu*, Nature Communications 2012, 3, 1280

Plasmon enhanced photo-thermoelectric conversion at graphene p-n junction

Enhancement factor: 4

Di Wu, Hailin Peng*, Zhongfan Liu*, et al., J. Am. Chem. Soc. 2013, 135, 10926.

Global light photodetection via plasmonic enhancement of photothermoelectric conversion

Di Wu, Hailin Peng*, Zhongfan Liu*, et al., J. Am. Chem. Soc. 2013, 135, 10926₄₃

Summary

- **1. Material synthesis: vapor-liquid-solid, vapor-solid, and van der Waals epitaxy strategy** were employed for the growth of 2D crystals, including nanoplate array with controlled orientation, thickness, and placement.
- 2. Near-infrared transparent flexible electrodes based on few-layer topological-insulator Bi_2Se_3 nanostructures was demonstrated for the first time. In addition, we present the realization of **broadband transparent** electrodes with 2D grids of topological insulator.
- **3. Modulation doped graphene** was grown via a large-scale CVD process. Pronounced photocurrent was observed in CVD hybrid graphene with p-n junctions.

Thank you for your attention

Hailin Peng (彭海琳)

Center for Nanochemistry

College of Chemistry and Molecular Engineering

Peking University, China

Email: hlpeng@pku.edu.cn

