Materials dependence of the spintransfer torques on DW

Ke Xia(Beijing Normal University)

Shuai Wang, Zhe Yuan(IOP, CAS)

Cheng Wang(Peking University)

Outline

- Introduction
- Two approachs to STT
- STT in spin valves
- Gilbert Damping
- Summary

Dirac equation

Ferromagnetism

L. Thomas *et al*., (2000).

正常金属

铁磁金属

自旋半金属

Faraday effect---Maxwell Equation (1865)

Faraday's law:

 $\frac{d\Phi}{dt}$ ${\mathcal E}$ (1831)

M. Faraday

Spin bottleneck magnetoresistance

磁矩对电子的散射----GMR

自旋阀-GMR

Schematic of exchange torque generated by spin-filtering

Slonczewski, J. C. (1996). Berger, L. (1996). L. Berger (1974)

Spin-transfer torques effects (1999)

Sun, IBM J. Res. & Dev. 50, 81(2006)

Current-driven domain wall motion:

Circuit theory(Batraas2001)

Methods

First principles approach to spin transfer torques

- •First-principles tight-binding LMTO
- •Green function method for layered systems.
- •Large system with the number of atoms > 1000

Spin current:
$$\hat{\mathcal{J}} \equiv \frac{1}{2} \left[\hat{\sigma} \otimes \hat{\mathbf{V}} + \hat{\mathbf{V}} \otimes \hat{\sigma} \right]$$
Spin torque from one lead: $\left\langle \hat{\mathbf{T}}_{\mathbf{R}}^{s} \left(\mathbf{k}_{\parallel} \right) \right\rangle = \sum_{\mathbf{R}' \in I - 1, I} \left\langle \hat{\mathcal{J}}_{\mathbf{R}', \mathbf{R}}^{s} \left(\mathbf{k}_{\parallel} \right) \right\rangle - \sum_{\mathbf{R}' \in I, I + 1} \left\langle \hat{\mathcal{J}}_{\mathbf{R}, \mathbf{R}'}^{s} \left(\mathbf{k}_{\parallel} \right) \right\rangle$ Spin torque on atom R: $\mathbf{T}_{\mathbf{R}} = \left(\frac{\hbar}{2} \right) \frac{e}{2h} \frac{1}{N_{\parallel}} \sum_{s, \mathbf{k}_{\parallel}} \left[\left\langle \hat{\mathbf{T}}_{\mathbf{R}}^{s} \left(\mathbf{k}_{\parallel} \right) \right\rangle_{\mathcal{L}} - \left\langle \hat{\mathbf{T}}_{\mathbf{R}}^{s} \left(\mathbf{k}_{\parallel} \right) \right\rangle_{\mathcal{R}} \right] V_{b}$ Swang , Y Xu, Ke Xia, (2008).

First principles approach to spin transfer torques

Linear equations of system

 $\tau \propto \left< \vec{s} \right> \times \vec{M}$

• TB LMTO

- Green function method
- NEGF if necessary
- Order& disorder

$$\begin{pmatrix} \mathbf{C}_{0} \\ \mathbf{C}_{1} \\ \mathbf{C}_{2} \\ \cdots \\ \mathbf{C}_{N} \\ \mathbf{C}_{N+1} \end{pmatrix} = (\mathbf{U}\mathbf{P}\mathbf{U}^{+} - \widetilde{\mathbf{S}})^{-1} \begin{pmatrix} \mathbf{S}_{0,-1}[\mathbf{F}_{\mathbf{L}}^{-1}(+) - \mathbf{F}_{\mathbf{L}}^{-1}(-)]\mathbf{C}_{0}(+) \\ 0 \\ 0 \\ \cdots \\ 0 \\ 0 \end{pmatrix}$$

Perpendicular Magnetized CoNi film

S.MANGIN et.al, Nature materials vol5,210, (2006), D.Ravelosona, et.al, APL 90,072508 (2007), D.Ravelosona, et.al, PRL 96,186604(2006), D.Ravelosona, et.al, J.Phys.D: Appl.Phys.40,1253(2007)

lattice constants	Configuration	AR(maj.)	AR(min.)	Gamma
Co(3.549)	Р	0.0147	0.7251	0.9604
	AP	1.1585	2.1302	0.2955
Ni(3.524)	Р	0.0242	0.7276	0.9357
· · ·	AP	1.1927	2.0679	0.2684
(Co+Ni)/2	Р	0.0187	0.7310	0.9502
	AP	1.1567	2.1054	0.2908

Interface resistance for Co|Ni(111)AR unit $\mathbf{f}^{-1}\Omega^{-1}\mathbf{m}^{-2}$ $Gamma = \frac{AR_{\downarrow} - AR_{\uparrow}}{AR_{\uparrow} + AR_{\downarrow}}$

Lattice constant		AR(maj.)	AR(min.)	Gamma
Со	3.54 9	0.014664	0.725067	0.960353
Ni	3.52 4	0.0241504	0.727603	0.935749
½(Co+Ni)	3.53 7	0.0186835	0.730984	0.950155

Co

Ni

Rippard (2009)

substrate $|Ta(3)|Cu(15)|Co_{90}Fe_{10}(20)|$

Spin transfter nanocontact oscillator devices(STNO)

G factor

$$g = \left[-4 + \frac{\left(1+P\right)^3 \left(3+\hat{s}_1 \cdot \hat{s}_2\right)}{4P^{3/2}} \right]^{-1}$$

Here Co P=0.35 Ni P=0.23

$$\mathbf{g}(\theta) = \frac{\text{torque}(\theta)}{\mathbf{I}(\theta)\sin(\theta)}$$

G factor can be enhanced by disorder effect.

J.C.Slonczewski (1996)

Reduced torque

 $\Lambda = 1.5$

Torques

$$L = \hbar I P_{\rm r} A \tau(\theta) / 4Ae$$

Reduced torques

$$\tau(\theta) = \frac{\sin \theta}{\Lambda \cos^2(\theta/2) + \Lambda^{-1} \sin^2(\theta/2)}$$

J.C. Slonczewski (2002)

Cu/Co/Cu/(Co₁Ni₂)₅Co/Cu

Experiment $\Lambda = 1.5$

Gilbert Damping In the Presence of Andreev Reflection

Tserkovnyak, Y. et al Phys. Rev. B 66, 224403 (2002)

Spin Dependent Scattering Matrix

$$\hat{S} = S^{\uparrow} u^{\uparrow} + S^{\downarrow} u^{\downarrow} \qquad u^{\uparrow/\downarrow} = \frac{1}{2} (\hat{I}_0 \pm \hat{\sigma} \cdot \vec{m})$$
$$\hat{S} = \frac{S^{\uparrow} + S^{\downarrow}}{2} \hat{I}_0 + \frac{S^{\uparrow} - S^{\downarrow}}{2} \hat{\sigma} \cdot \vec{m}$$
$$\frac{\partial \hat{S}}{\partial X} = S^{\uparrow} \frac{\partial u^{\uparrow}}{\partial X} + S^{\downarrow} \frac{\partial u^{\downarrow}}{\partial X} = (S^{\uparrow} - S^{\downarrow}) \hat{\sigma} \cdot \frac{\partial \vec{m}}{\partial X}$$

EMISSIVITY $\frac{d\hat{n}_{l}}{dX} = \left(\frac{1}{4\pi i} \sum_{nn'l'} \frac{\partial \hat{s}_{nn',ll'}}{\partial X} \hat{s}_{nn',ll'}^{\dagger}\right) + \text{H.c.}$

Tserkovnyak, Y. et al Phys. Rev. Lett, 88,117601(2002) Buttiker et al. (1994)

F/N Spin Pump

Current
$$\hat{I}_{F/N} = e \frac{\partial \hat{N}_{F/N}}{\partial X} \frac{\partial X}{\partial t} = \frac{1}{2} I_C \cdot \hat{i}_0 - \frac{e}{\hbar} \hat{\sigma} \cdot \hat{I}_{F/N}^s$$

Precession induced current $\hat{I}_{F/N}^s = \frac{\hbar}{4\pi} \left(\operatorname{Re} A^{\uparrow\downarrow} \vec{m} \times \frac{\partial \vec{m}}{\partial t} + \operatorname{Im} A^{\uparrow\downarrow} \frac{\partial \vec{m}}{\partial t} \right),$
 $I_C = 0.$

Mixing Conductance (One Interface)

$$A^{\uparrow\downarrow} = \sum_{nm} Tr(\delta_{mn} - r_m^{\uparrow} r_n^{\downarrow\dagger})$$

LLG equation in the presence of spin current pump

$$\frac{\partial \vec{m}}{\partial t} = \gamma_0 \vec{H}_{eff} \times \vec{m} + \alpha_0 \frac{\partial \vec{m}}{\partial t} \times \vec{m} + \frac{\gamma \hbar}{4\pi M_s V} (A_r^{\uparrow\downarrow} \vec{m} \times \frac{\partial \vec{m}}{\partial t} + A_i^{\uparrow\downarrow} \frac{\partial \vec{m}}{\partial t})$$

Effective Damping Enhancement

$$\frac{\partial}{\partial t}\vec{m} = -\gamma_{eff}\vec{m} \times \overrightarrow{H_{eff}} + \alpha_{eff}\vec{m} \times \frac{\partial}{\partial t}\vec{m}$$

$$\frac{\gamma}{\gamma_{eff}} = 1 - \frac{\gamma \hbar}{4\pi M_s V} A_i^{\uparrow\downarrow}$$
$$\alpha_{eff} = \frac{\alpha + \frac{\gamma \hbar}{4\pi M_s V} A_r^{\uparrow\downarrow}}{1 - \frac{\gamma \hbar}{4\pi M_s V} A_i^{\uparrow\downarrow}}$$

Tserkovnyak,Y. *et al Rev. Mod. Phys. ,77* ,4(2005)

Urban. R *et al Phys. Rev. Lett.* 87, 217204(2001) Heinrich, B. *et al, J. Appl. Phys.* 93,7545(2003)

Spin Pump at F/S Contacts

F/N/S Interface Approach

We are interested in wave functions in the *F layer*

C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997). K. Xia *et al.*, PRL89, 166603(2002)

For Precession Induced Pumping X (t)= Φ (t) the precession angle

Spin current and Damping
Current
$$\hat{I}_{F/S} = \frac{1}{2} I_C \cdot \hat{i}_0 - \frac{e}{\hbar} \hat{\sigma} \cdot \hat{I}_{F/S}^S \quad I_C = 0,$$

 $\hat{I}_{F/S}^S = \frac{\hbar}{4\pi} \int d\varepsilon (-\frac{\partial f}{\partial \varepsilon}) \left(\operatorname{Re} G^{\uparrow\downarrow}(\varepsilon) \vec{m} \times \frac{\partial \vec{m}}{\partial t} + \operatorname{Im} G^{\uparrow\downarrow}(\varepsilon) \frac{\partial \vec{m}}{\partial t} \right)$

Effective Damping

$$\alpha_{eff} = \frac{\alpha_0 + \frac{\gamma \hbar}{4\pi M_s V} \int d\varepsilon (-\frac{\partial f}{\partial \varepsilon}) \operatorname{Re} G_{F/S}^{\uparrow \downarrow}(\varepsilon)}{\gamma_0 - \frac{\gamma \hbar}{4\pi M_s V} \int d\varepsilon (-\frac{\partial f}{\partial \varepsilon}) \operatorname{Im} G_{F/S}^{\uparrow \downarrow}(\varepsilon)} \operatorname{Im} G_{F/S}^{\uparrow \downarrow}(\varepsilon)$$

Mixing Conductance and Andreev Reflection

$$G^{\uparrow\downarrow}(\varepsilon) = \left(N_{Sharvin} - \left|R_{he}^{\uparrow\uparrow}(\varepsilon)\right|^{2} - \left|R_{he}^{\uparrow\downarrow}(\varepsilon)\right|^{2} - \left|R_{he}^{\downarrow\uparrow}(\varepsilon)\right|^{2} - \left|R_{he}^{\downarrow\downarrow}(\varepsilon)\right|^{2} - \left|R_{he}^{\downarrow\downarrow}(\varepsilon)\right|^{2}\right) - R_{ee}^{\uparrow\uparrow}(\varepsilon)R_{ee}^{\downarrow\downarrow\uparrow}(\varepsilon)$$
Normal Reflection

$$+R_{he}^{\downarrow\uparrow}(\varepsilon)R_{he}^{\uparrow\downarrow\dagger}(\varepsilon)+R_{he}^{\uparrow\uparrow}(\varepsilon)R_{he}^{\downarrow\downarrow\dagger}(\varepsilon)$$

多重散射公式

 C.W.J. Beenakker, Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics, edited by I.O. Kulik and R. Ellialtioglu, pp. 51-60, (NATO Science Series, Dordrecht, 2000)

其中 $\delta = \phi_{\uparrow} - \phi_{\downarrow}$ 为随机数

Temperature Dependence of Gilbert Damping Enhancement

Temperature Dependence of Gilbert Damping Enhancement

When Normal metal in F/N interface becomes superconducting, spin pump induced damping decreases, i.e. $\Delta \alpha < 0$

Metallic nanopillars (Fukushima et al., 2005)

Model

First-principles spin-transfer torque

Z. Yuan, S. Wang, KX, Solid State Communication (Spin Caloritronics) (2009).

Bias- and temperature-STT

Peltier and Seebeck coefficients

	$G' \; (e/hV)$	$G(e^2/h)$	$\partial_{\epsilon} \ln G _{\epsilon_F} \; (eV^{-1})$	$S/T (\mathrm{nV/K^2})$
Ni domain wall	2.94	2.48	1.19	-28.9
Ni Sharvin	2.84	2.51	1.13	-27.5
Polarized Sharvin	P=0.23 -	—	0.57	-13.9
Co domain wall	-0.253	2.175	-0.116	2.83
Co Sharvin	-0.264	2.181	-0.121	2.95
Polarized Sharvin	P=0.35 -	_	0.184	-4.50

$$P \equiv \frac{w_{\uparrow}G_{\uparrow} - w_{\downarrow}G_{\downarrow}}{w_{\uparrow}G_{\uparrow} + w_{\downarrow}G_{\downarrow}}$$
$$\bar{S} = w_{\uparrow}S_{\uparrow} + w_{\downarrow}S_{\downarrow}$$

Messages

Spin-dependent transport properties of interfaces govern many

magnetoelectronic phenomena.

Agreement between interface-dominated transport properties calculated by first principles and the isotropy assumption with experimental values is (semi)-quantitative for itinerant systems like transition metals.

Mixing conductance and spin-torque can be calculated and measured accurately.

Computational Materials Science The End