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Graphite → Graphene

Graphene is a one-atom-thick
(~3.35Å) planar sheet of carbon 
atoms that are packed in a 
honeycomb crystal lattice

Discovered in 
2004 
Nobel Prize 
awarded in 
2010

3D graphite 
crystal

Graphite 
pencils

2D graphene



Graphene: a new condensed-matter 
system

Graphene: Linear dispersion near the Dirac points

Electron band structure in conventional 
condensed-matter system

Electron band structure in graphene
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Novel properties

� Low electrical resistivity 1µΩ·cm at room temperature

~33% less than Cu and Ag, the lowest-resistivity metallic materials

� Room temperature mobility up to 200,000cm2/Vs

electrons in graphene travel more than 100 times faster than
those in Si (µ~1400cm2/Vs)

� Superb mechanical strength

breaking strength comparable to that of the diamond

� Superior thermal conductivity

Heat transfer ability ~10 times higher than Cu and Ag

� Optically transparent in the visible range: transparent
conductor



Significant potential applications 

Science, 327, 662 (2010)

high-frequency electronics

optoelectronic devices 
(displays, touch screens, etc.)

stronger composite materials
(lighter but more crack-resistant aircraft)

biosensors
(disease diagnosis)



How to make graphene?
Scotch-tape method

Scientific American 

� Advantages:
* high quality graphene flakes
* low cost

� Drawbacks:
* low efficiency (tiny flakes)
* not suitable for large area production

required by electronic applications 

Mechanical exfoliation

NT-MDT

Observable color contrast 
on 300 nm SiO2 layer

120X110µm



How to make large area graphene?
Growth on transition metal by 

chemical vapor deposition (CVD)

• Growth temperature 
900-1000oC

• Ethylene or methane 
is used as C source

• Cu is a catalyst for 
graphene growth

hydrocarbon molecules 
crack on hot Cu surface



How to make large area graphene?
chemical vapor deposition (CVD)

C2H4 or CH4

H2, Ar

apparatus

� Advantages:
* large area graphene
* reasonably low cost
* ease of processing

� Drawbacks:
* lower quality than exfoliated

flakes (natural graphene)
* have to transfer to dielectric

substrates for electronic
applications



Transfer of graphene from metal 
surfaces onto dielectric substrates

Cu substrate

single layer graphene
spin-coated 
with PMMA

transferred onto 
glass or SiO2

anneal or 
rinse in 
acetone

transferred 
graphene



Graphene after transfer

The transfer process introduces impurities, defects, and 
mechanical damages in graphene

large area

as-grown 
on Cu foil

transferred 
onto SiO2

820 µm0

613 µm

SiO2

graphene

impurities from 
chemical etchant



Natural graphene flake on 
SiO2:

µ~10,000-25,000cm2/Vs

CVD graphene on Cu foil 
transferred onto SiO2:
µ~2000-5000cm2/Vs

We study CVD growth on single crystal Cu  

Natural graphene flake has higher 
quality than CVD graphene

X. Li, et al., 
Science, 324, 
1312 (2009)

K. Novoselov, 
et al., Science, 
306, 666 (2004)
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Graphene growth on Cu single crystal

• Growth temperature 
900oC

• Ethylene was used as 
C source

• Cu is a catalyst for 
graphene growth

Chemical vapor deposition (CVD) 

in UHV (STM) environment



Graphene on Cu single crystal surfaces

Graphene layers on Cu surfaces are strained

� strains in graphene on Cu single crystal (111) 
and (100) surfaces are very different 

� strain is released after transfer 

The quality of CVD graphene on Cu single 
crystal is high



Inelastic light scattering: 
Raman scattering
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scattering frequency

scattering wave vector

Raman scattering probes elementary excitations: 
phonons, vibrations, electronic excitations, etc.
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Characterization of graphene by Raman 
scattering

Raman spectrum Measure optical phonons

G-band (q→0 mode) at ~1580cm-1

(electron-phonon coupling)

2D-band (two-phonon mode) at 

~2680cm-1 (monitors strain)

D-band at ~1350cm-1 (due to

disorder)



• 2D Raman band is blue-
shifted

• quality comparable to 
natural graphene! (similar 
FWHM)

2D Raman band

CVD graphene on (111) Cu single 
crystal 
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2D Raman band is very sensitive 
to strain

mode softens under tensile strain

Blue-shifts indicate 
compressive physisorption strain

M. Huang, et al., PNAS, 106, 7304 (2009)

T. Mohiuddin, et al., PRB, 79, 
205433 (2009)

0%

ε=0.77%



• 2D Raman band is blue-
shifted

• The blue-shift indicates 
compressive strain due to 
physisorption of graphene
on Cu

CVD graphene on (111) Cu single 
crystal 

2D Raman band
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Graphene on Cu (111) surface has 
higher quality 
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Graphene on Cu (111):

• Narrower 2D band

• Larger 2D/G ratio

• Smaller D/G ratio

Growths on Cu (111) and (100) are 
vastly different 



Graphene on Cu single crystal 
Nonuniform strain

• graphene on Cu (100): 
2D band is broadened 
by a factor of 2

• graphene on Cu (111): 
2D band is broadened 
by 20%

Strain is more uniform on Cu (111) surface



Cu single crystal 

Face-centered cubic 
(FCC) structure

3.61Å

2.55Å

Cu (111) hexagonal

Cu (100) square



Characterization by scanning tunneling 
microscopy (STM)

� Image graphene surface at the atomic level

� Moire patterns (superstructure) appear when

* two periodic grids with different lattice
constants are overlaid

* two periodic grids are rotated with each
other



STM of graphene on 
Cu (111) single crystal 
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Rotational angle θ is almost zero  



Graphene on Cu (111) single crystal 

� Graphene honeycomb lattice with lattice constant of 2.46Å

� Cu (111) hexagonal lattice with lattice constant of 2.55Å

� Rotational angle θ is almost zero  

Quasi-epitaxial 
growth



Molecular dynamics (MD) simulations of 
graphene on Cu (111) single crystal 

Simulated superstructure C-C bond length simulation

� Compressive strain over the entire surface
� Strain varies between 0.3% and 0.6%
� Domain walls are highly compressed



Graphene on Cu (100) single crystal 

� No epitaxy: honeycomb graphene lattice on Cu 
(100) square lattice 

� Highly nonuniform strain that varies from 0.3% 
compressive to 0.2% tensile

Superstructure C-C bond length
Molecular Dynamics simulations

STM



CVD growth on Cu foil

CH4, H2

Ar

polycrystalline and 
rough surface

-1.60

1.73µm

0 300µm

300µm

• Growth temperature 
1000oC

• Methane was used 
as C source
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CVD graphene on Cu foil 

after transfer onto SiO2: 

• 2D band overlaps that of
natural graphene

• broadening related to
residual strain

Release of strain
2D Raman band
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Summary 

� Raman and STM reveal degree of 
perfection and strain

� Strain is dependent on Cu surface 
orientation 

� Release of strain after graphene is  
transferred onto SiO2 substrate

CVD graphene on copper substrates

Nano Letters 12, 2408 (2012)
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Nitrogen doped graphene

Wei et al. Nano Lett. 9, 1752 (2009)

Doping: control electronic
properties of graphene



Nitrogen doped graphene

CH4+H2

NH3, Ar

chemical vapor 
deposition

(CVD)

• Copper foil is heated to ~1000oC

• NH3, CH4, H2, and argon gas are passed in with 
appropriate ratio

• Doping level is controlled by the pressure of ammonia 
gas



Visualizing individual nitrogen dopants in 
honeycomb lattice

10××××10 nm

1.4××××1.4 nm

Substitution doping
(graphitic form)

Computed STM image
B. Zheng et al., ACS Nano 4, 4165 (2010)

STM



Raman scattering from nitrogen doped 
graphene
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� lower 2D/G ratio
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Raman characterization of carrier 
density in graphene

G peak position

Yan et al., Physical Review Letters

98, 166802 (2007) 

2D/G ratio

Das et al., Nature Nanotechnology

3, 210 (2008) 

lower electron (hole) density  
lower G peak frequency and higher 2D/G ratio



Raman mapping of nitrogen doped 
graphene
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Estimation of average carrier 
concentration

Distribution of G 
peak position

Based on the shift in the 
position of the G
peak in the Raman spectra 
induced by doping, we 
estimate that the carrier 
concentration is 5 ± 1.5 ×
1012 cm-2

1581 1583 1585 1587 1589

pristine
N-doped

G peak position (cm-1)



Mobile carriers contributed by nitrogen 
dopants

 

 0.8Å

-0.6Å

2.0nm

STM

� Nitrogen dopants are randomly 
distributed in the honeycomb 
lattice

� N atom density ~1.3 × 1013 cm-2

� Carrier concentration (estimated 
by Raman) is 5 ± 1.5 × 1012 cm-2

Each graphitic N dopant contributes (on average) 
~0.4 mobile carriers to the graphene lattice



Summary 

� Individual nitrogen dopant was
observed in real space by STM. Most
of the dopants are graphitic forms

� Nitrogen concentration is lower at
grain boundaries

� Each graphitic nitrogen atom
contributes ~0.4 mobile charge
carrier (electron) into graphene lattice

Nitrogen doped graphene

Science 333, 999 (2011)
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Topological insulator (TI)

topological 
insulator

conductor insulator

Charge carriers on the surfaces or edges carry a net 
spin and conduct electricity without much thermal 
dissipation 

→ promising candidate for spintronics and quantum 
computing devices which are based on spin transport



Challenges in TI research

In 3D TIs, bulk characteristics 
dominate their properties

Reduce its dimension: 
enhance surface-to-bulk ratio

1D nanowires 2D nanoplates



TI nanoplates
representative TI material: Bi2Te3

As-grown NP, 11 nm

11 nm



Raman scattering from bulk Bi2Te3 and 
as-grown Bi2Te3 NPs
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4 Raman-active modes from bulk Bi2Te3

The out-of-plane modes are more 
sensitive to the reduction of thickness



Raman selection rules in crystals with 
inversion symmetry

c=
3.045n

m

Bi2Te3 crystal lattice

Even-parity phonons (with 
subscripts “g”) can be observed in 
Raman scattering

Odd-parity phonons (with 
subscript “u”) can be observed in 
infrared absorption



Infrared-active modes observed in 
Raman scattering from Bi2Te3 NPs
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The emergence of IR-active modes in Raman spectra reveals 
a breakdown of inversion symmetry in TI nanostructures



Robustness of vibrational properties of 
Bi2Te3 NPs
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Vibrational properties preserve 
after device fabrication



Transferred Bi2Te3 NPs

As-grown 11 nm Transferred 12 nm

Mechanical 
transfer to

remove 
impurities



Raman scattering from transferred 
Bi2Te3 NPs
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Infrared-active modes are absent in transferred NPs: 
absence of inversion symmetry breaking

Transferred NPs
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Absence of inversion symmetry 
breaking

in transferred NPs

Possible reason:

The transferred NPs are the ones that stand on 
edge on the substrate 

strain applied by the substrate induce 
inversion symmetry breaking in as-grown NPs

Nanotechnology 23, 455703 (2012)
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