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Outline

• Introduction  (to glasses)
• Minimalist topological model

– foams & covalent glasses
– non-interacting Hamiltonian,  constrained dynamics  

glassiness, two-time dynamics    
• Annihilation-diffusion 
• Lattice analogues

– Different types of absorbing ground states
• zero degeneracy              • high degeneracy

• Ultimate distillation? 
– Simple strong glass 

• characteristic features            • mean-field soluble with 
activation

• Extensions & related models



Glasses

log t

fast
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T>T*

Structural glass
• Non-periodic ‘freezing’

– viscosity ~ 1012 poise  → Tg

• Fast and slow processes
• Aging/ preparation-

dependence

Equilibrium: reducing T; T→Tg

Non-equilibrium: increasing tw

C(t+ tw, tw)

T<T*



Structural glasses
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Structural glasses

Strong: e.g. silica
covalent, strong directional forces

Fragile e.g.argon
weaker, central (non-directional) forces: Lennard-Jones



Usual models and systems

• Interacting ‘particles’, simple dynamical 
moves

– Spin glasses: quenched disorder

– Structural glasses: no imposed disorder
• glassiness self-induced
• analogies of fragile glasses with D1RSB spin glasses



Fragile glasses/D1RSB

Fragile structural glasses

∆Sls

T

TK ~ Kauzmann temperature
Tg ~ Dynamical glass temp.

(viscosity ~ 1013 poise)
T* ~  Response plateau

D1RSB spin glass

TK ~ Thermodynamic transn

Tg ~ Dynamical transition
T* ~ Correlation plateau

(onset of extensive config. entropy)

Soluble models (range-free)
Self-consistent theory

Simulations

TKTg

T* > Tg > TK



Main models to discuss today

Trivial thermodynamics
but

Non-trivial dynamics
due to

kinetic constraints



Topological ‘foam’

‘Glauber-Kawasaki’ T1 dynamics

Prob. ~ exp(-∆E/T)

2( 6 )i
i

E n= −∑

Euler :   6n< > =
nb -1

Different from usual foam

Aste & Sherrington

Minimalist topological model

Ground state: hexagonal



Covalently bonded glasses

Two dimensions
(for simplicity)

Preferred angle at vertex = 120 º = 
Preferred crystal: hexagonal 

Re-connections?

Randomly connected network  liquid/ 
glass

Distorted bonds

Energy of deviation ~ 
n-sided polygon

→ E ~  (n-6)2/(6n)2

Bonding

T1

Re-connection

sp2

Euler: <n> = 6

2( 2 / 3)θ π−

2 / 3π



Results for topological model

Energy: different starts Temporal autocorrelation fns

Equilibrium Non-equilibrium

Lowering T Increasing waiting time

Ordered start:T=0

Aste & S Davison & S

∞Energy Random start: T=

1100N timesteps β=1,2,2.5,3,3.5,4 2 3 46; 10 ,10 ,10N N Nβ τ= =



Theoretical understanding

Diffusion & Annihilation

A+B→0

Several types of ‘particle’ (A, B)

Some: Fast T-independent diffusion
Others: Slow T-dependent diffusion



Annihilation-diffusion
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Energy or correlation function

m
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τ

Annihilation/diffusion
of dimers (fast)

Annihilation/diffusion 
of singletons (slow)

Structural glass



Lattice-based analogue

Hexagonal lattice

Moves (Quasi-T1)

Si

‘Spins’: Si = 1, 0, -1

Energy:

Dynamics: ‘Metropolis-Kawasaki’

D>0: unique g.s., defects ±1
D<0: degenerate g.s., defects 0

2
i

i

E D S= ∑

+/-

+/-

-/+
-/+ Equal 

prob.

Conservation: 0ii
S =∑



Energy
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tw= 1000N
tw= 5000N
Equilibrium

(tW= time at each temperature)

Curves = equilibrium; calculation easy since non-interacting

Slow cooling Rapid quench

(tW= time following quench)

Falls out of equilibrium Activation barriers
impenetrable at T=0

D>0

Davison & S



Macrodynamics

Energy Correlation 
function
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Annihilation-diffusion
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Ground state Dynamics

Defects

isolated dimers

Annihilation Motion of
isolated 
defect
Barrier

or v.v.

High barrier No barrier (free diffusion)



Plateau: fast annihilation complete
slow essentially unstarted
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Energy (D>0)

• Ground state unique: {S} = {0}

• Defects: ± 1

• Energy reduces through dimer
annihilation

• Dimers move freely→fast time ~ τ (=2)

• Single defects need to pair to form 
dimers which can move and annihilate 

• Slow diffusion

• Energy barriers→τ~exp(∆/T);Arrhenius

2( ) (2 /3 )(1 / 2) ( )(1 / ) ; ~ .5, ~ .5b c
eq eqE t a t a e t e e b cβ− −= − + + − + +

0.5 ;  ~A A B A t−+ + →

/ 40 ; ~ ( / ) dA B t τ −+ →

Non-equilibrium



Auto-correlation function

One move changes C(t) → exp.

fast dimers: τ~2
slow singletons: τ~2exp(∆/T)
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1 2/ / 2.12
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D < O

Highly degenerate ground state: {Si=±1} 
Single defect type: 0

Single dimer type: (0,0):

A+A+A→A         A+A→Ø

Different asymptotic decay exponent
Dimer diffusion can be blocked by disadvantageous environment

2;   0, 1;   0i i i
i i

H D S S S= = ± =∑ ∑



D < 0 results

Qualitatively similar to D>0
but 

different exponents 
and some 

stretched exponential character



Square lattice

E(t) C(t)

Dimer
moves

Singleton
move



Summary of processes

• Dimer annihilation:

All involve 
4 neighbours

• Dimer diffusion:

• Defect movement via dimer creation

2 3

2 3

  (2 2 4 )

A A A

A A A

A A

φ φ
φ φ

φ

+ + → +

+ + → +

+ →

2 2A A A Aφ φ+ + → + +

3 2

3 2

A A A

A A A

φ φ
φ φ

+ → + +

+ → + +



A simpler encapsulation?

• Desired features
– fast annihilation of dimers
– fast diffusion of dimers
– hindered motion of isolated defects
– all only with appropriate environments

• ‘4-changes’

– non-degenerate absorbing ground states
– Either single defect type (A) or two types (A,B)



Constrained ‘backgammon’

• Non-interacting ‘particles’: 
– Trivial equilibrium, unique absorbing g.s.

• Constrained dynamics
– Annihilation: analogue of dimer annihilation against 

defect; 
Rate =1

– Diffusion: analogue of dimer diffusion

Rate = D

– Creation: analogue of defect motion by dimer creation

Rate =

1

N

i
i

H n
=

=∑

( , ) ( 3, 1)i j i jn n n n→ − +

( , ) ( 2, 2)i j i jn n n n→ − +

2e β−( , ) ( 1, 3)i j i jn n n n→ − +

3in ≤



Philosophy: follow number of A

• Dimer annihilation:

• Dimer diffusion:

• Defect movement via dimer creation

2 3

2 3

A A

A A

A

A

φ φ
φφ

+ → +

+ →

+

++

2 2 AA A Aφφ+ → + ++

3 2

3 2

A

A

A A

A A

φ
φ

φ
φ

+ → +

+ → +

+

+

( , ) ( 3, 1)i j i jn n n n→ − +

( , ) ( 2, 2)i j i jn n n n→ − +

( , ) ( 1, 3)i j i jn n n n→ − +

Dictionary: , defects, ground stateA A φ≡ ≡



Translation between ‘languages’

-1+1

-1 0

0 0

0 -1

i j i j

( , ) ( 3, 1)i j i jn n n n→ − +

+1

-1

0

0

+1

-1

0

0
( , ) ( 2, 2)i j i jn n n n→ − +

( , ) ( 1, 3)j i j in n n n→ − +

Gains or losses of 
defects



Simulations

Equilibrium

Correlation function Arrhenius decay

1  2 3 4 5 6β =

2 (dashed),  (solid)d d= = ∞

2

( ) / (0);   ( , ') ( ) ( ')
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eq eq i i
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eq eq eq eq i

C t C C t t n t n t

C t C t c c n
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( ) (0) / ;   0 ~c c

eq eqC C t Tτ τ= = = ∞



Energy/particle number decay

Single type of particle
Annihilation without diffusion

(occurs even at T=0)

Dimer diffusion and annihilation
(occurs even at T=0)

        

               

field theory prediction

 / 2;  2c

A A

d d d

φ

α

+ →
↓

= < =
after quench

T=0.1



2 types of particle

.

– Annihilation: analogue of dimer annihilation against 
defect; 

Rate =1

– Diffusion: analogue of dimer diffusion

Rate = D

– Creation: analogue of defect motion by dimer creation

Rate =

1

( );   ( ) 3
N

A B A B
i i i i

i

H n n n n
=

= + + ≤∑

,[( ) ] [ , ( ) ]i j i jAAB X AXφ→

[( ) , ] [ ,( ) ]i j i jABX Y X ABY→

2e β−[( ) , ] [ ,( ) ]i j i jAX X AABφ →



Energy (particle number) decay

Single type of particle Two types of particle

Final decay: 

      / 2;  2c

A A

d d

φ
α

+ →
= =

Final decay: 

     / 4;  4c

A B

d d

φ
α

+ →
= =



Theory & simulation (infinite d)

Concentration decay                             Out of equilibrium

after quench                                 correlation & concentration

Circles ~ simulation, lines ~ theory           Circles ~ correlation, squares ~ concentration

1
wt D−>

T=1/6



Other systems/models

• Background

• Other common models

• Extensions    



Current philosophy 

Glassiness through kinetic constraints

Replace
Real interacting systems with simple constraints

by

Effective systems with no or weaker Hamiltonian 
interactions but more constrained dynamics

usually heuristic

Return to 



Spin-facilitated Ising models

Frederickson-Andersen

Idea: dense liquid
• Many regions of high density, few regions of low density.
• Atomic motion only possible if enough nearby mobile low-density 

regions to facilitate 

Model: SFIM
• Spins: ↓ ≡ dense, ↑ ≡ dilute,
• Heat bath/Glauber/Metropolis dynamics

– but constrained
– spin-flip only if  f ≥1 of neighbours are up (nearby dilute/ mobile region).

• Gives glassy dynamics
Usually ignore J:           

( )i i ji ij
H s J s s= −∑ ∑

ii
H s=∑

Example



Field theory

1
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State function
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Static phase transition to crystalline 
order in present problem?

Include correlation energies in Hamiltonian

but not yet done

θ1 θ2

θ3

2
1 2 3{( 2 ) }fλ θ θ θ π+ + −



Model with ‘crystalline’ phase

Baxter’s 8-vertex model
2-d lattice of spins (i,j): exactly soluble thermodynamics

1, , 1 1, 1 1, 1 1, , 1({ })i ij i j ij i j i j j i ji
ij

jJDH σ σ σσ σ σ σ σ+ ++ ++ + + += − +−∑

plaquette
Alone gives no 
thermodynamic 

transition

ferromagnetic on diagonals
Alone gives 2 separable systems with ferromagnretic

transition at Tc
0 = 2J/sinh-11

Glassy slow-down
at T0 ~ D

Ferromagnetic transition 
at Tc

sinh(2 / ) exp( / )c cJ T D T= −(Jack, Garrahan, S)

Instead



E(t); quenches from T(t=0) = ∞

T = (1+ε)Tc

ln t

E(t)

Tg ~ D > Tc

T = (1-ε) Tc→

T = (1+ε)Tc

↓



Broken Ising bonds, excited plaquettes

nb (broken Ising bonds)

np(excited plaquettes) np
1

np
2

ln t

Glassy plateau Ferromagnet

1 2~ (1 )  Quench:  ~( 1 )c cT T T Tε ε+ −→

ln (nb, np)

Glassy plateaux
~ exp( 2 / )pn D T−

Schematic scale



3-d?  sp3-bonds etc.?

• 3-d networks with sp3 bonds: cf. α-silicon

? Effective constrained dynamics?
?What are analogues of the cells?

3-d volumes?
2-d areas?

Does it matter?

Random connections 
between bonds
(no dangling bonds)

Random pairwise
re-connection dynamics:
e.g. Glauber-Kawasaki-WWW

(Wejchert, Weaire, Wooten)



Other rules?

Strong / fragile?

Above strong Lennard-Jones fragile

Both have foam-like structure

Covalent bonds Dual Wigner-Seitz cells

But different energetics for changes

Mainly topology Softer  



Spherical atoms: Voronoid cells

Continuous range of positions and energies from green to red

Motion of the spheres

Strong to fragile?



Binary glasses

• 2 sizes of atom
– ? Topological analogue 
– Eckmann: 

• Two “colours” of plaquette, “red” & “blue”
• “red” want 5 sides, “blue” want 7 sides

• But actually more subtle: packing “reds” together or 
“blues” together they want to be 6-sided

– Also Euler’s theorem always true (independent of #red / #blue

2 2( 5) ( 7)i j
red blue

H n n= − + −∑ ∑



Conclusions

• Kinetic constraints can cause glassy 
dynamics
– even with non-interacting Hamiltonian
– and trivial thermodynamics

• Can yield strong glass Arrhenius behaviour
– several simple models

• topological foams, idealized covalency
• constrained spins, multi-spin flips
• ‘backgammon’ with energetic rather than entropic 

barriers
– soluble and significant in mean field limit

• Potentially interesting extensions


