

基于s-p杂化理论开发新型太阳能转化材料

郝维昌

物理系

北航-伍伦贡大学联合研究中心

Outline

Introduction: sp hybridization

Four stories

Symmetry

- $Bi_{24}O_{31}Br_{10}/Bi_{24}O_{31}Cl_{10}$
- Ag₁₀Si₄O₁₃

Symmetry Breaking

- Vacancy Engineering Blank TiO₂
- Strain engineering BiOBr

太阳能转化和利用: 国家重大战略需求、国际学术前沿

Solar Energy-Heat (Radiation, Concentrating Solar Power(CSP))

Solar Energy-Electrical Energy

Solar Energy-Chemical Energy

Semiconductor Photocatalysis

Solar Cell

Photoelectrochemical cell

Dye-sensitized solar cell

 $\begin{array}{|c|c|c|} \bullet & Solar & absorption & \eta_A \\ \bullet & Charge & separation & \eta_S \\ \bullet & Energy & conversion & \eta_C \end{array}$

- 光与物质相互作用的本质与规律
- 半导体材料中光生载流子产生、输运与能量转化物理机制

$\mathbf{\eta} = \mathbf{\eta}_{A} \times \mathbf{\eta}_{s} \times \mathbf{\eta}_{c}$

Fundamental scientific issues

- Elements
- Crystalline structure (symmetry), Defects, Surface state
- Internal Stress, Internal electric fields

Metal: Na K Mg Ca Sr Ba In Sn Sb Bi Cu Zn Ag Nonmetal: O S X (X=F, Cl, Br, I) B C N P Nothing is Impossible

Orbital overlapping $\hat{H}\Psi(x) = E\Psi(x)$ $\mathbf{E}_{n}(\mathbf{\bar{k}}) = \mathbf{E}_{n}^{a} + \mathbf{A}_{n} + \mathbf{J}_{n} \sum_{\mathbf{r}_{near}} \mathbf{e}^{i\,\mathbf{\bar{k}}\cdot\mathbf{\bar{r}}_{near}}$

- **E**^a_n Atomic energy level
- **A**_n The influence on the movement of the Atomic energy level
- J_n The overlap integral of the atom with its nearest neighbors

Band width is proportional to the degree of the orbital overlap

Larger overlap, wider Band, more dispersive band

Energy level and energy band

Outline

Introduction: sp hybridization

Four stories

Symmetry

- $Bi_{24}O_{31}Br_{10}/Bi_{24}O_{31}Cl_{10}$
- Ag₁₀Si₄O₁₃

Symmetry Breaking

- Vacancy Engineering Blank TiO₂
- Strain engineering BiOBr

Interesting Bismuth Compounds

- Bismuth is a kind of green heavy metal element
- Solidification: volume expansion like water (3 %)
- Melting point 271 °C, boiling point 1560 °C
- the de Haas-van Alphen (dHvA) effect
- Bi^{3+} with $5d^{10}6s^26p^0$ electronic configuration results in lone pairs of electron
- The strong internal static electric field between perpendicular to the [Xm] layer and the $[Bi_2O_2]$ layer is advantages to the photoinduced electron-hole pairs

Novel Photocatlyst: BiOX(X=Cl, Br, I)

Typical layer crystal structure

Huang FQ, Wang WD, Appl. Catal. B 68 (2006) 125–129 BiOCl

Zhang LZ, J. Phys. Chem. C 112, 747-753 (2008). **BiOCl**

Wang C, Wang TM, Rare Metals 27, 243-250 (2008) June 18th, 2007. BiOX(X=Cl, Br,I)

The photocatalytic activity BiOX was discovered by chance In order to get $CaBi_2O_4$, we use HCl instead of HNO_3 reported in reference, and then we get a novel visible light photocatalyst-BiOCl.

Oxygen Evolution vs. Irradiation Time

AccV spot Magn Def WD 500 nm 100 kV 3.0 100000x SE 5.0 500 nm C C Spot Magn Def WD 500 nm 100 kV 3.0 100000x SE 4.9 500 nm 100 kV 3.0 1000000x SE 4.9 500 nm 100 kV 3.0 100000x SE 4.9 500 mm 100 kV 3.0 10000x SE 4.9 500 mm 100 kV 3.0 100000x SE 4.9

Photodegradation of isopropanol (IPA)

IPA (20 mL) 300W Xe light (400 nm~520 nm) BiOX photocatalyst (0.4 g)

Rare Metal , 2008, 27, 243-250

BiOCI

 $Bi_{24}O_{31}Br_{10}$ $Bi_{2.4}O_{3.1}Br_{1}$ $E_{c}=0.30 \text{ eV}$

BiOBr E_c=0.56 eV

Empirical formula

$$E_{\rm c} = \chi - 0.5 E_g + E_0$$

 E_g is band gap, E_0 is scale factor relating the reference electrode redox level to the absolute vacuum scale (E_0 =-4.5 eV for normal hydrogen electrode), and χ is absolute electronegativity of semiconductor

Xu, Y.; Schoonen, M. A.A. Am. Mineral. 2000, 85, 543-556.

Visible light (ethanol)

UV-Vis (NaS/Na₂SO₃)

Hexavalent Chromium reduction

ACS Catal. 2014, 4: 954

Bi₂₄O₃₁Br₁₀

电池	填充因子	短路电流密度	开路电压	电池效率
	(FF)	(Jsc/mA cm ⁻²)	(Voc/V)	(ŋ)
Bi ₂₄ O ₃₁ Cl ₁₀	75.05 %	3.98	0.61	1.50 %
Bi ₂₄ O ₃₁ Br ₁₀	50.90%	1.72	0.48	0.4 %

1.0

Scientific Reports 2014,4:7384

Outline

Introduction: sp hybridization

Four stories

Symmetry

- $Bi_{24}O_{31}Br_{10}/Bi_{24}O_{31}Cl_{10}$
- Ag₁₀Si₄O₁₃

Symmetry Breaking

- Vacancy Engineering Blank TiO2
- Strain engineering BiOBr

Metal: Na K Mg Ca Sr Ba In Sn Sb Bi Cu Zn Ag Nonmetal: O S X (X=F, Cl, Br, I) B C N P Nothing is Impossible

J. Mater. Chem. A 2016, 4: 10992

新型光能转化材料

新材料	文章发表	他引	性能
BiOX(X=Cl, Br, I)	Rare Metals 2008, 27: 243	165	分解水产氧
Bi ₂₄ O ₃₁ Br ₁₀	ACS Catal. 2014, 4: 954	80	分解水产氢 Cr ⁶⁺ 还原
Bi ₂₄ O ₃₁ Cl ₁₀	Scientific Reports 2014, 4: 7384	24	染料敏化太阳能电池
Ag ₁₀ Si ₄ O ₁₃	J. Mater. Chem. A 2016, 4: 10992	5	有机污染物氧化
BiSiO	Dalton Transactions2017 DOI: 10.1039/C7DT03193A		有机污染物氧化

发展了3类6种新型光能转化材料,受到了广泛的关注

Perovskite as absorber

2013 Years Material

CH₃NH₃Pbl₃

Ethylammonium

The cumulative world PV installations reached around 100 GWp (gigawatts) by the end of 2012. Some 85% use crystalline Si, with the rest being polycrystalline thin film cells, mostly cadmium telluride/cadmium sulfide ones.

Nature, 2013,501,323; Nature, 2013,342,344; Nature,2013, 501,396; Nature, 2013, 499, 316

What is next one?

Layer structure bismuth materials??

J. Phys. Chem. C 2013, 117, 13909

Metal: Na K Mg Ca Sr Ba In Sn Sb Bi Cu Zn Ag Nonmetal: O S X (X=F, Cl, Br, I) B C N P Nothing is Impossible !!!

С

Outline

Introduction: sp hybridization

Four stories

Symmetry

- $Bi_{24}O_{31}Br_{10}/Bi_{24}O_{31}Cl_{10}$
- Ag₁₀Si₄O₁₃

Symmetry Breaking

- Vacancy Engineering Blank TiO₂
- Strain engineering BiOBr

• 对称性决定基本电子结构

• 对称破却决定光电转化效率

 $\hat{H}\Psi(x) = E\Psi(x)$

黄昆、谢希德,《半导体物理学》p308

对称性破不同决定了大家的差异!!!

The water comes from residual water molecular in the HUV chamber.

The **V**_o on the surface of r-TiO₂ can only survive for **several hours** in HUV.

- 本征吸收
- 激子吸收
- 自由载流子吸收
- 杂质吸收
- 晶格吸收

黄昆、谢希德,《半导体物理学》p308

Polarization VS Trap state? Surface state Defects state

Dalton Transactions 2017, 46: 10694

Y Xie, J. Am. Chem. Soc. 2013, 135, 10411

Outline

Introduction: sp hybridization

Four stories

Symmetry

- $Bi_{24}O_{31}Br_{10}/Bi_{24}O_{31}Cl_{10}$
- Ag₁₀Si₄O₁₃

Symmetry Breaking

- Vacancy Engineering Blank TiO2
- Strain engineering BiOBr

ACS Appl. Mater. Interface 2015, 7: 27592

2D Mater. 2017, 4: 025102

Publication

- [1] Curr. Opin. Green Sustain. Chem. 2017,6: 93-100
- [2] **2D Mater.** 2017, 4: 025102
- [3] ACS Catal. 2014, 4: 954
- [4] ACS Appl. Mater. Interface 2015, 7: 27592
- [5] J. Mater. Chem. A 2016, 4: 10992
- [6] Energy Environ. Sci. 2015, 8:1231
- [7] Scientific Reports 2014, 4: 7384
- [8] J. Phys. Chem. C 2016, 120: 8589
- [9] J. Phys. Chem. C 2015, 119: 14094

[10] J. Phys. Chem. C 2012, 116: 1251

E-mail: whao@buaa.edu.cn

Thank You! 祝大家一切顺利!

UOW Prof. S X Dou, Prof. X L Wang, Dr. X Xu, Dr. Y Du

NSFC (Nos. 51672018, 51472016, 51272015) ARC (DP140102581, DP170101467)

Thank You!