

high-pressure

Computational condensed matter physics

Novel oxidation state of iron, peroxide FeO₂: Understanding physical properties and implication to geoscience

crystal structure searching

Geoscience

Duck Young Kim

2018 Beijing univ.

Collaborations

FeO_2H_x experimental synthesis

Center for High Pressure Science &Technology Advanced Research

Computational study of correlation effect of FeO2

Computational Crystal Structure Prediction

Material – plasma interaction experiment

Center for High Pressure Science &Technology Advanced Research

Top 1000-Talents Award

energy

high pressure functional materials

The mission of HPSTAR is to become a world-leading research center in high-pressure research and to impact multidisciplinary physical sciences. HPSTAR provides ample research funding, advanced facilities, and open, liberal, collaborative research environment. Scientists of HPSTAR have the total freedom to define their research goals, paths, teams, and collaborations in China and abroad. They will be able to fully devote their time, efforts, and creativity to pursue individual scientific dreams.

*2222*825555

high pressure chemistry

Superhard material

Earth & planetary sciences

High Pressure Technology

Computational theory group in HPSTAR

New silicon

New Carbide

(Ca_{1-x}La_xFeAs₂: 112)

Ca/La

As

Ca/L

FeAs superconductivity

FeO₂

Organic superconductivity

Hydrides under pressure

New superoxide

artificial low dim. materials

Under Pressure, graphite turns into diamond

*sp*³ diamond *sp*² graphite

@ ambient conditions

- 1. Graphite is the ground state
- 2. Diamond is very stable
- 3. Many metastable phases coexist

Energy Landscape changes with pressure

Real landscape is multi-dimensional

Low pressure

Pressure induces structural transformation

Pressure

GRAPHITE

- hexagonal crystal
- Black and opaque
- Very soft
- electrical conductor
- thermally insulating

DIAMOND

- Cubic crystal
- Clear and transparent
- Hardest mineral known
- electrical insulator
- Highest thermal conductivity

1 Elephant per pencil =10,000 atm

Diamond anvil cell (exp.)

1×10⁻⁵ mm³ @ 100 GPa (very thin slice of hair)

Center of the earth = 360 GPa

Pressure ranges

Current maximum pressure in DAC ~ 350 GPa

Can achieve multi-TPa in shock-wave experiments

Aluminum subjected to 400 TPa in underground nuclear explosion

Development of apparatus for multi-TPa experiment, laser driven shock wave

pre-compression, National Ignition Facility (NIF) etc

Conventional wisdom for elements is

Group ↓Perio	→1 d	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																		2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	*	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
			*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			- ALIO	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			* *	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Oxygen is a superconducting metal under compression

Alkali metals are insulators under compression

Nature 458 182 (2009)

- Under pressure, it is common to find unexpected physical properties of most elements
- Atomic configuration determines materials property

Highest superconductivity Tc of elements under pressure

Image courtesy of Dr. Takahiro Matsuoka

30 elements are superconductors at ambient pressure 53 elements are superconductors under pressure

High–Pressure Chemistry: What is the chemical formula for sodium chloride?

Fig. 2. Crystal structures of Na chlorides and NaCl₇. (A) Pm3-NaCl₇. (B) Pnma-NaCl₃. (C) Pm3n-NaCl₃. (D) P4/mmm-Na₃Cl. (E) P4/m-Na₃Cl₂. (F) Cmmm-Na₃Cl₂. (G) P4/mmm-Na₂Cl. (H) Cmmm-Na₂Cl. (I) Imma-Na₂Cl. Blue and green spheres denote Na and Cl atoms, respectively.

Unexpected Stable Stoichiometries of Sodium Chlorides

Weiwei Zhang,^{1,2}*† Artem R. Oganov,^{2,3,4}*† Alexander F. Goncharov,^{5,6} Qiang Zhu,² Salah Eddine Boulfelfel,² Andriy O. Lyakhov,² Elissaios Stavrou,⁵ Maddury Somayazulu,⁵ Vitali B. Prakapenka,⁷ Zuzana Konôpková⁸ VOL 342 SCIENCE 20 DECEMBER 2013

conventional superconductivity reaches 200 K

nature International weekly journal of science							
Home News & Comment Research Careers & Jobs Current Issue Archive Audio & Video For Aut							
Archive Volume 525 Issue 7567 Letters Article							
NATURE LETTER 《 昌							
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system							
A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin							
Affiliations Contributions Corresponding author							
Nature 525, 73–76 (03 September 2015) doi:10.1038/nature14964 Received 25 June 2015 Accepted 22 July 2015 Published online 17 August 2015							

MgB₂ with $T_c=39$ K was highest

Cite as: R. P. Dias et al., Science 10.1126/science.aa11579 (2017).

Observation of the Wigner-Huntington transition to metallic hydrogen

Ranga P. Dias and Isaac F. Silvera*

Lyrnan Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA.

Fig. 2. Photographs of hydrogen at different stages of compression. Photos were taken with an iphone camera at the ocular of a modified stereo microscope, using LED illumination in the other optical path of the

Conventional wisdom?

Pressure can be regarded as an additional dimension of science

computational approaches

Electronic structure analysis

Atomic position predictions

computational approaches

Prediction crystal structure

- Make a random unit cell
- Throw the required numbers of each atom type into the cell at random
- Relax under the quantum mechanical forces and stresses
- Look at lowest-energy or other interesting structures

Acc. Chem. Res. 1994, 27, 309-314 Are Crystal Structures Predictable?

Angelo Gavezzotti*

"No": by just writing down this concise statement, in what would be the first one-word paper in the chemical literature, one could safely summarize the present state of affairs

Need to find GLOBAL energy minimum.

Trying all structures is impossible:

$$C = \frac{1}{(V/\delta^3)} \frac{(V/\delta^3)!}{[(V/\delta^3) - N]!N!}$$

N _{atoms}	Variants	CPU time			
1	1	1 sec.			
10	10 ¹¹	10 ³ yrs.			
20	10 ²⁵	10 ¹⁷ yrs.			
30	10 ³⁹	10 ³¹ yrs.			

Enthalpy

Computational structure prediction

First principles calculations

configuration space

- Make a random unit cell
- Throw the required numbers of each atom type into the cell at random
- Relax under the quantum mechanical forces and stresses
- Look at lowest-energy or other interesting structures

In silico experiments

Anger. Chem. Int. Ed. 53 8930 (2013)

Contents of FeO₂ presentation

FeO₂ : prediction and experimental synthesis

FeO₂ : Detailed theoretical work

What should be done

doi:10.1038/nature18018

FeO₂ and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles

Qingyang Hu^{1,2}*, Duck Young Kim^{1,2}*, Wenge Yang^{1,3}*, Liuxiang Yang^{1,3}, Yue Meng⁴, Li Zhang^{1,2} & Ho-Kwang Mao^{1,2}

Computational prediction

in 2014

duckyoung, I am interested in new Fe-O compound at high pressure

especially iron-rich oxides

I can try but

Binary crystal structure searching is easy ! standard DFT calculations for Fe and Fe-O compounds are not reliable But pressure reduces e-e correlation effects in general

It is not straightforward to determine reliable pressure regime for standard DFT calculations to Fe-O systems

The simplest model of the earth

For realistic model, we need Si, Mg, O Fe-O compounds are important to understand the Earth There are many iron compounds with two end members - FeO and Fe₂O₃ such as Fe₄O₅, Fe₃₂O₂₅, Fe₇O₉, Fe₃O₄, and Fe₅O₇

Conventional Wisdom # 1

The mantle is uniformly reducing toward Fe

Conventional Wisdom # 2 The GOE is solely biogenic

The oxygenation of the Earth is considered to have been started by the oxygenic photosynthesis of cyanobacteria.

Conventional Wisdom # 2 The GOE is solely biogenic

doi:10.1038/nature13068

The rise of oxygen in Earth's early ocean and atmosphere oxygenic photosynthesis of cyanobacteria

Timothy W. Lyons¹, Christopher T. Reinhard^{1,2,3} & Noah J. Planavsky^{1,4}

Evidence for oxygen-producing photosynthesis before the GOE

Current Biology 19, R567–R574, July 28, 2009 ©2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.05.054

The Continuing Puzzle of the Great Oxidation Event

Review

Conventional Wisdom # 3

Hydrogen cycle is dictated by hydrous Mg and Al silicates

FR 13 MARCH 2014 | VOL 507 | NATURE | 221

doi:10.1038/nature13080

Hydrous mantle transition zone indicated by ringwoodite included within diamond

D. G. Pearson¹, F. E. Brenker², F. Nestola³, J. McNeill⁴, L. Nasdala⁵, M. T. Hutchison⁶, S. Matveev¹, K. Mather⁴, G. Silversmit⁷, S. Schmitz², B. Vekemans⁷ & L. Vincze⁷

EARTH'S INTERIOR

Dehydration melting at the top of the lower mantle

Brandon Schmandt,^{1*} Steven D. Jacobsen,^{2*} Thorsten W. Becker,³ Zhenxian Liu,⁴ Kenneth G. Dueker⁵

(Fe,Mg)₂SiO₄ with H₂O releases hydrogen

First attempt at 300 GPa

It is surprising that you found FeO2 to be very stable. Fe2O3 is the highest known compound. A straight line should be drawn between Fe2O3 and Fe, instead of Fe3O4 and Fe. In either case FeO2 is very stable. Can you find its minimum stability pressure?

We chose the highest pressure at the Earth as a starting point because then standard DFT might not fail to calculate total energy

Lowering pressures ...

As far as standard DFT works

FeO₂ is stable phase at high pressures

FeO₂ is a metastable form even at ambient pressure

Computational searches for iron oxides at high pressures

Gihan L Weerasinghe¹, Chris J Pickard² and R J Needs¹ Published 16 October 2015 • © 2015 IOP Publishing Ltd Journal of Physics: Condensed Matter, Volume 27, Number 45

An interest

Experimental synthesis

with Fe₂O₃ + O₂, we found a pyrite-phase of Pa-3 peroxide - FeO₂ at 76 GPa

All ca SCIENTIFIC REPORTS ern

OPEN Stable magnesium peroxide at high pressure

bscience

Sergey S. Lobanov^{1,2}, Qiang Zhu³, Nicholas Holtgrewe^{1,4}, Clemens Prescher⁵, Vitali B. Prakapenka⁵, Artem R. Oganov^{3,6,7,10} & Alexander F. Goncharov^{1,8,9}

Several chemical routes are found

 $Fe_2O_3 + 1/2O_2 = FeO_2$ 2FeOOH = 2FeO₂ + H₂

Now, it becomes more interesting story to geoscience

Observation of FeO₂ at the DLM conditions

Experimentally we confirmed :

Observation of FeO₂ at the DLM conditions

Experimentally we confirmed :

 $Fe_2O_3 + 1/2O_2 = FeO_2$ $2FeOOH = 2FeO_2 + H_2$

A scenario based on our study

(GOE may be abiogenic)

Fe oxidation dictates hydrogen cycle

Conventional Wisdom # 1

The mantle is NOT uniformly reducing toward Fe

Conventional Wisdom # 2 The GOE is NOT solely biogenic, maybe.....

Conventional Wisdom # 3 Hydrogen cycle is NOT dictated by hydrous Mg and Al silicates, but Fe oxidation

We are at starting point

Theory

- What is correct band structure (e-e correlation in FeO₂)
- Spin transition of Fe compounds
- computationally, can we predict chemical paths to FeO2
- What's physical properties of FeO₂

Experimentally

- How Fe can meet H₂O at the deep lower mantle ?
- Is FeO₂ stable against environment ?

Commonly

- Can FeO2 survive in real mantle environment?
- Does it match with established geological observations?

e-e correlation in FeO₂

@ 76 GPa, LDA + U calculations tells U = 5 eV and J=0.8 eV gives best match to experimental bond lengths

Phys. Rev. B 95 075114 (2017)

Band structure with DMFT calculations

σ

Spin transition softens seismic velocity

HS to LS transition with pressure induces a volume collapse Bulk modulus become soft at the spin crossover zone

image courtesy: Afu Lin's group

The relation between FeO₂H and FeO₂

 $2\mathbf{F}\mathbf{e}\mathbf{O}_2\mathbf{H} = 2\mathbf{F}\mathbf{e}\mathbf{O}_2\mathbf{H}\mathbf{x} + (1-\mathbf{x})\mathbf{H}_2,$

PNAS 114 1498-1501 (2017)

FeO₂H releases hydrogen at DLM

Schematic view of hydrogen circulation

but, hydrogen release in FeO₂H is contradicting

PNAS 114 1498-1501 (2017)

FeO₂H explains seismic velocity at DLM

Nature in press

How much can be done using DFT?

1. Hydrogen-bearing iron peroxide and the origins of ultralow velocity zones, accepted in Nature (2017)

2. When water meets iron at Earth's core-mantle boundary, accepted in National Science Review (2017)

Altmetric: 6 Views: 205

CHEMISTRY

More detail >>>

Research Highlight

nature

Geochemistry: A journey to the oxidized centre of the Earth

Gabriella Graziano

Iron is present in various forms in the different layers of the Earth – metallic iron in the core, bridgmanite ((Mg,Fe)SiO₃) and ferropericlase ((Mg,Fe)O) in the mantle, and olivine $((Mg,Fe)_2SiO_4)$, haematite (Fe_2O_3) and goethite in the crust. Another form of iron that is present in the mantle is FeO₂, which can be generated by either haematite oxidation or goethite dehydrogenation, two processes that occur at the high pressures (~78 GPa) and temperatures (~1,800 K) in the deep lower mantle of the Earth. In previous work, the Mao group found that the unit cell of the FeO₂ mineral derived from goethite dehydrogenation was quite variable owing to the presence of residual hydrogen in the form of FeO₂H_x. Mao and co-workers have now moved forward: by combining diamond anvil cell compressions, state-of-the-art X-ray diffraction measurements and first-principles simulations, they have quantified the amount of hydrogen lost by goethite and proposed a two-step mechanism for goethite dehydrogenation.

Pyrite, a post DLM phase after post perovskite?

An Introduction to Post-Perovskite: The Last Mantle Phase Transition

Kei Hirose¹, John Brodholt², Thorne Lay³, and David A. Yuen⁴

Discovery of the perovskite to post-perovskite phase transition in MgSiO₃, expected to occur for deep mantle conditions, was first announced in April 2004. This immediately stimulated numerous studies in experimental and theoretical mineral physics, seismology, and geodynamics evaluating the implications of a major lower mantle phase change. A resulting revolution in our understanding of the D" region in the lowermost mantle is well underway. This monograph presents the multidisciplinary advances to date ensuing from interpreting deep mantle seismological structures and dynamical processes in the context of the experimentally and theoretically determined properties of the post-perovskite phase change; the last silicate phase change likely to occur with increasing pressure in lowermost mantle rocks.

A pyrite of FeO₂ is not alone - MgO₂, FeS₂, SiO₂, AlOOH

Recently, we have obtained seismic velocity data of FeO₂ and FeOOH

Conclusion / perspective

High-Pressure science can provide an alternative view of states of matter ; another dimension of science

Crystal structure search using first principle calculations gives a practical tool to predict atomic configuration of materials at a given constraints without experimental inputs

Computational condensed matter physics can play a critical role in studying geoscience and an emerging theoretical approach even can change the conventional understanding

We suggest an abundant FeO₂ patches at the lower mantle conditions in the earth and we are working on providing more theoretical/experimental evidence to support our idea, which is a major research topic of our center for 5- 10 years

Post-doctoral positions are available (duckyoung.kim@hpstar.ac.cn)