Random search: a tool for discovery and the end of water?

Chris J Pickard University College London & London Institute for Mathematical Sciences

Condensed matter!

2

Computers

705,024

A real challenge

Many small calculations

<pre>top = 11:05:21 up 134 days, 22:42, 2 users, load average: 8.17, 8.30, 8.20 Tasks: 412 total, 9 running, 403 sleeping, 0 stopped, 0 zoebie Cpu(s): 98.7Zus, 1.0Zsy, 0.0Zni, 0.0Zid, 0.0Zwa, 0.0Zhi, 0.3Zsi, 0.0Zs</pre>									
Swap: 5242811	Sk tota		15/814	96K (used, used,	524273	3066 Fre 3206 Fre	e, 1897328K buffers e, 9785568k cached	
OTA LISCO	00	MT	UIDT	BEC	CUD	C 900	1 SHEN	TIMEA COMMOND	
30545 c io	25	0	200m	107e	6444	R 100	2 0.7	E-42 44 castep-secial	
30818 c ip	25	ŏ	219a	125	5632	R 100	2 0.8	1:44.42 castep-serial	
30941 c ip	25	Ő.	175e	81m	5620	R 100	2 0.5	0:54.65 castep-serial	
30584 c.ip	25	0	203a	110m	6496	R 99.5	9 0.7	6:25.01 castep-serial	
30779 c.ip	25	0	201m	107m	5680	R 99.9	9 0.7	2:08,21 castep-serial	
30653 c.jp	25	0	235n	141m	6432	R 99.5	5 0.9	4:03.64 castep-serial	
30695 c.jp	25	0	181w	87m	5620	R 99.5	5 0.5	1:24.95 castep-serial	
30857 cjp	25	0	200m	106m	5684	R 92.8	5 0.7	1:40,22 castep-serial	

Lots of data

Materials science as search

Gerd Ceder's Materials Project, MIT

Materials Genome Initiative: A Renaissance of American Manufacturing

\$100M to accelerate materials discovery

The elemental palette

Is the ICSD empty?

A very important problem

What structure will a collection of atoms adopt? What will they do?

Material

Typically answered by experiment

Ab initio random structure searching

Pickard & Needs, PRL 2006 and JPCM 2011

Discovery through virtual experiments

Nature Physics, 2007

Ammonia is ionic

Nature Materials, 2008

Aluminium is complex

Nature Materials, 2010

Physical Review Letters, 2011

HCP Lennard-Jones Crystal

The size of configuration space rapidly increases - but the ground state basin is also growing

A tougher one

20xC@I00GPa, 30K structures

Constraints Hard and soft

Carbon and Hydrogen

Graphane - Sofo, Jorge O. et al. (2007)

Cell shape gamma-Boron 28 atoms

Comparing to EAs

Oganov et al *Natur*e 2009 ~550

Ji, Wang & Ho PCCP 2010 ~288

Units 2B₁₂ + 4B

Comparing to EAs

Oganov et al Nature 2009 ~550

Ji, Wang & Ho PCCP 2010 ~288

Symmetry B₁₂ + 2B, 2 symm ops

~108

Experiment

Ammonia monohydrate

JACS, 2009 with Dom Fortes

Input lattice parameters and density Output solved crystal structure containing 112 atoms

"easy experiment, easy theory - new science"

Iron at extremes

Aluminium at Terapascals

Ba-IV and Rb-IV united

fcc - hcp - bcc - Ba-IV - sh -

Pickard & Needs, Nature Materials, 2010

Boron

Nitrogen: from cages to salt to waves

Sun et al, condmat, 2012

Dense rock

O, Mg, Al, Si, Ca, Fe

and squeeze (theoretically) to 10TPa

Calculate binary convex hulls using AIRSS $2 \times Fe + 50 \times O + 19 \times Si + 17 \times Mg + 1 \times Al + 2 \times Ca$ 0.5 x Al₂O₃ + 17 x MgO + 12.5 x SiO₂ + 6.5 x SiO₃ + 2 x FeCa

2 x Fe + **25** x O + I9 x Si + I7 x Mg + I x AI + 2 x Ca I x AIO + I7 x MgO + 7 x Si₂O + 5 x Si + 2 x FeCa

H_2O at TPa

Space group	Stability range (TPa)	No. fu	Source	
Ice X	-0.30	2	Ref. [12]	
Pbcm	0.30-0.71	4	Ref. [13]	
Pbca	0.71-0.78	8	Ref. [14]	
P3121	0.78 - 2.01	12	This work	
Pcca	2.01 - 2.24	12	This work	
C2	2.24 - 2.36	12	This work	
$P2_1$	2.36 - 2.75	4	Ref. [15-17]	
$P2_1/c$	2.75 - 6.06	8	Ref. [16]	
C2/m	6.06-	2	Ref. [15]	

P (TPa)	Phase	density (g/cm ³)	
0	ordered-Ih	0.917 (expt)	
0.1	x	3.18	
0.5	Pbem	4.87	
0.8	Pbca	5.70	
1.0	P3:21	6.29	
2.0	Peca	8.16	
2.25	C2	8.55	
2.5	P21	8.94	
3.25	$P2_1/c$	9.93	
6.0	C2/m	12.84	

Enthalpies

Phase Diagram

Structures

Electronic properties

Does H₂O exist?

Maybe not - H₂O₂ is very stable

$$\mathrm{H}_2\mathrm{O}
ightarrow rac{\delta}{1+\delta} rac{1}{2} \,\mathrm{H}_2\mathrm{O}_2 + rac{1}{1+\delta} \,\mathrm{H}_{2+\delta}\mathrm{O}_2$$

Decomposition of H_2O

H₂O is not a thermodynamically stable composition above 5TPa

A hydrogen sponge

Fermi surface effects

The doping of C2/m with H moves E_f to a minimum in the eDOS

Virtual experimentation

AIRSS - **much** better than you would think

It will be increasingly difficult to distinguish theory, modelling and experiment

Acknowledgements Richard J Needs

Engineering and Physical Sciences Research Council http://www.castep.org/ The CDG