

基于ZnO纳米结构的紫外光发射器 件及忆阻器件研究

刘益春

东北师范大学 物理学院 紫外光发射材料与技术教育部重点实验室

研究方向

紫外光发射材料与技术教育部重点实验室

生命

光/电存储材料与器件
 <表面等离子体全息光存储
 <氧化物薄膜阻变型存储器
 <忆阻器与人工神经网络模拟

微纳敏感材料与器件 <微纳单晶FET气敏器件 <纳米纤维气敏材料与器件 <磁性/发光/拉曼生物检测材料

纳米材料——优异的光/电特性,独特的物理/化学性质

(一) 基于ZnO纳米线的紫外LED/LD器件

❖研究背景与思路

◆研究工作

一纳米线异质结的设计

-LED/LD器件的构筑

-器件效率的改善

(二) 基于ZnO纳米薄膜的忆阻器件

◇研究背景与思路

◇研究工作

-ZnO阻变性能的改善---材料(合金化)、结构(局域电场) -基于ZnO化阻器的神经突触器件

短波长光发射器件

UV light-emitting material promising candidate-----ZnO

Wide band gap 3.37 eV High exciton binding energy (60 meV) High optical gain coefficient (320 cm⁻¹) Low growth temperature Available single-crystalline substrate Environment-friendly

P-type困难:	自补偿效应强、
	受主固溶度低、
	受主离化能大
	稳定性

Stability of p-type ZnO

Appl. Phys. Lett. 92, 052106 (2008)

Thermal

Peak	N 1s	assignment (reference)	Our assignment	Stabilities
1	~396 eV	N-Zn bond or N _O ⁽⁷⁻¹¹⁾ , polarized triply bounded CN ⁽¹⁶⁾ , N-O ⁽¹⁷⁾	N-Zn at <i>nitrogen</i> <i>rich</i> environment	unstable
2	~398 eV	N-Zn bond or N _O ^(2, 13,14,16-18) , C-N species ⁽⁷⁾ , N-H ^(9, 10)	N-Zn at <i>oxygen</i> <i>rich</i> environment	Stable to 723 K
3	~400 eV	C-N species ^(7, 10, 16) , N-H ^(13,14,16) , oxynitride ⁽⁸⁾	-NO species	unstable
4	~402 eV	(N ₂) ₀ ^(7, 10, 14, 16) , nitrite ^(2, 8)	(N ₂) ₀	unstable

Appl. Phys. Lett. 95, 191903 (2009)

研究思路

研究工作--ZnO纳米线异质结构

研究工作--ZnO纳米线异质结构

<u>Appl. Phys. Lett. 102, 031905 (2013)</u> J. Alloy. Compd. 513, 399 (2012)

研究工作--ZnO纳米线异质结构

$$\frac{1}{d_{(hkl)}^{2}} = \frac{h^{2} + k^{2} - 2hk\cos\gamma}{a^{2}\sin^{2}\gamma} + \frac{l^{2}}{c^{2}}$$

$$\sigma = -\frac{Y}{\nu} \frac{d_{\text{(hkl)}} - d'_{\text{(hkl)}}}{d'_{\text{(hkl)}}}$$

$$\Delta E_{\text{stress}} = a_0^{\Gamma} (\ln V - \ln V_0)$$

Appl. Phys. Lett.	<i>102</i> ,	031905	(2013)
J. Alloy. Compd.	<u>513,</u>	399 (201	<u>(2)</u>

Sample	<i>a</i> /Å	<i>c</i> /Å	γ / Å	$\Delta E_{\rm g}$ /meV	$\Delta E_{ m stress}$ /meV
1	4.255	4.190	88.76	1031	184
2	4.244	4.174	88.66	1163	257
3	4.232	4.140	88.44	1281	370

研究工作--平面LED器件

p-GaN/i-ZnO/n-ZnO异质结ZnO UV LEDs

p-type: Si, NiO, GaN, organics, etc.

研究工作--纳米线LED器件

研究工作--纳米线LED器件稳定性

ZnO 纳米线 LED的稳定性?

稳定性研究: 在环境空气中 存放一年监测其电致发光随 暴露时间变化

辐射(非辐射)复合效率迅 速降低(增加),其中辐射 复合部分中紫外(可见)发 射效率迅速降低(增加)。

<u>Appl. Phys. Lett. 100, 203101 (2012)</u>

研究工作--器件: 纳米线器件稳定性

Appl. Phys. Lett. 100, 203101 (2012)

研究工作--纳米线LED器件稳定性改进

<u>Appl. Phys. Lett. 100, 203101 (2012)</u>

研究工作--纳米线LD器件

ZnO/MgO核壳纳米线MIS异质结LD

Appl. Phys. Lett. 99, 063115 (2011)

总体思路

研究工作--LSP增强型LED器件

Surface Plasmon: collective oscillation mode of electrons at metal/dielectric interface

Evanescent wave: Decay with the distance from the metal surface

Spectral enhancement: fluorescence spectrum, Raman spectrum and nonlinear optical effect.

研究工作--器件: LSP增强型LED器件

研究工作--器件: LSP增强型、平面LED器件

Ag LSP增强的p-GaN/i-ZnO/n-ZnO异质结LED

Appl. Phys. Lett. 101, 142101 (2012)

研究工作--LSP增强型、平面LED器件

研究工作--LSP增强型、纳米线LED器件

研究工作--LSP增强型、纳米线LED器件

Ag 纳米粒子LSP增强的 ZnO纳米柱阵列LED

研究工作--器件: LSP增强型、纳米线LED器件

Exciton-LSP 近场耦合增强 ZnO近带边EL

研究工作--器件: LSP增强型、纳米线LED器件

EL空间分布展宽: LSP-exciton coupling, LSP isotropic scattering

研究背景

<u>阻变存储器 Resistive random-access memory (RRAM or ReRAM)</u> ---下一代非挥发性存储器? (FeRAM、MRAM、PCRAM、RRAM)

<mark>存 储 器</mark> 类型ℯ	NOR闪存。	NAND 闪存。	铁电存储器₽	磁阻存储器₽	相受存储器。	阳安存储器 。
单元。 元件。	1T₽	1T₽	1T1C#	1T1R₽	1T1R₽	ITIR/1D1R₽
单元+ 面积+	9−11F ² ¢	5F ² +2	12-22F ² +2	6 -16 $F^2 \phi$	5-16F ² ¢	5-8F ² +2
读电压。	2⊽₽	2v¢	0.9v−3.3v+)	1.5v₽	3⊽+2	0.4v₽
读时间。	10ns¢	50ns¢	45ns₽	20ns≠	60ns#	<10ns+2
写电压₽	7−9v+	15v+²	0.9−3.3v¢	1. 5v₽	3⊽+2	0.5v−1v+²
写时间₽	1us/10ms≓	1ms/0.1ms₽	10ns₽	20ns₽	50/120ns₽	5−10ns¢
写能量↔	>1e-14¢	>1e-14+2	>3e-14₽	>1.5e-10₽	≻6e-12¢	>1e-12₽
读写↓ 次数↓	>1e5₽	>1e5₽	≻1e14@	≻1e16+2	>1e9₽	`>1e6₽
保持。 时间。	10年~	10年~	10年~	10年~	10年~	10年~
评论≠	/e	e	与 CMOS 工艺 不兼容,存 储密度较小↔	与 CMOS 工艺 不兼容,写 操作功耗大↩	与 CMOS 工艺 不兼容,写 操作功耗大↩	与 CMOS 兼容。 住好,研究时 间短,物理机 理不明确。

Parameter	Typical Flash	Target values	
Switching element size (nm)	100×100 cells	50×50	
Switching time (ns)	>10,000	10 to 50	
Set voltage (V)	18-20	2 to 4	
Reset voltage (V)	>5	-3 to -5	
Read voltage (V)	0.1 to 0.5	0.1 to 1	
Read current (A)	1×10 ⁻⁶	1×10 ⁻⁶	
Switching energy (pJ/bit)	410-1,010 ⁽¹⁾	<0.5	
Device yield	>99%	>99%	
Endurance	10^3 to 10^7	10^5 to 10^6	
Resistance ratio	N/A	10^5 to 10^6	

RRAMの動作特性 (動作電流・速度)

研究工作-ZnO基忆阻器件

<u>ZnO材料</u>:可调控的电学性质、可调控的薄膜结晶状态、

可充当离子导体、制备手段多样......

研究工作——高速ZnO RRAM器件

引入Ag纳米晶层 —— 参数均一 + 高速转变(20ns/30ns)

Nanoscale 5, 4490 (2013)

研究工作——高速ZnO RRAM器件

Nanoscale 5, 4490 (2013)

研究工作—透明柔性ZnO基 RRAM器件

Crystalline

Amorphous

In 5s 球 形轨道 交叠大

研究工作—透明柔性ZnO基 RRAM器件

大角度弯折及10⁵次弯折下器件运行稳定

Flat

U-shape

After bending

Voltage(V)

Resistance(ohm)

Bending cycles

柔性及可见透过率

IEEE Electron Device Letters 32, 1442 (2011)

忆阻器: Memristor =<u>Memory</u>+<u>Resistor</u> 未来发展*:即开型PC、模拟式计算机、人工智能-----*1971年,蔡少棠,《忆阻器:下落不明的电路元件》 2008年,HP公司,《The Missing Memristor found》

<mark>忆阻器</mark>:电阻阻值随流过的电荷量 发生改变,并能够记住阻值的变化。

神经突触: 连接状态随流经的 离子而发生变化。

器件结构

艾宾浩斯记忆规律

研究工作—p-n结器件的基本忆阻特性

研究工作—p-n结器件的基本忆阻特性

研究工作—p-n结器件的基本忆阻机制研究

IGZO双层忆阻器

$$\mathbf{I}(\mathbf{t}) = \mathbf{I}_0 + \mathbf{A}_1 \mathbf{e}^{(-\mathbf{t}/\tau)}$$

20-40s的弛豫时间可能由于 浓度差引起的氧离子回扩散。

p-n结忆阻器

 $I(t) = I_0 + A_1 e^{(-t/\tau_1)} + A_2 e^{(-t/\tau_2)}$

慢的弛豫过程可能来源于氧的浓度差 快的弛豫过程可能来源于内建电场

p-n结忆阻器会有不同的机制

 dC^{-2} $q\varepsilon_0\varepsilon_r N_{\rm D}A^2$ dφ

势垒层主要在p-CuA10₂一侧

势垒宽度同时 引起电阻、势 全电容变化

p-n结势垒电容

$$C_T = A \epsilon_r \epsilon_0 / X_D$$

因此: 正偏压下,势垒区变窄,电阻减小, 反偏压下,势垒区变宽,电阻增加。

$$X_{D} = \sqrt{\frac{2\varepsilon_{r}\varepsilon_{0}(N_{A} + N_{D})(V_{D} - V)}{qN_{A}N_{D}}}$$

器件电阻集中在p-n结 处,因此电场主要加 在p-n结势垒区,导致 电场实际上在调节势 垒宽度。

正向偏压,CuAlO₂一侧Cu空位N_A增加,ZnO一侧氧空位N_D增加, 使势垒区宽度X_D减小。器件电阻R减小。

反向偏压,CuAlO₂一侧Cu空位N_A减小,ZnO一侧氧空位N_D减小,使势垒区宽度X_D增加。器件电阻R增加。

p-NiO/n-ZnO异质结构 对忆阻原因进行研究

400度生长的p-n 结器件容易开启, 而室温ZnO/NiO 结构在-5V到5V 的范围内并没有 被开启,我们认 为这只是对势垒 宽度的调节所导 致的电流增加。

 dC^{-2} $q\varepsilon_0\varepsilon_r N_{\rm D}A^2$ dφ 由于室 原因: 温生长时,结 晶性相对差, 又没有外延关 系,氧离子在 薄膜生长的过 程中由富氧NiO 一侧向缺氧 ZnO一侧扩散, 导致两边杂质 浓度降低。

400度生长的六角相ZnO的(002)峰与400度生长的立方相NiO的(111)峰有外延关系。

室温生长的p-n结器件展示了忆阻行为,同时实现了 对电容的记忆,而400度下的器件无忆阻行为。

使用非晶材料,或者降低的结的质量,有利于氧 离子在势垒区迁移,更加利于实现忆阻行为。

为研究设计忆容器提供一种思路

总结

(一) 基于ZnO纳米线的紫外LED/LD器件

材料——纳米线异质结构(ZnO/MgZnO、MgZnO/MgO径向/轴向异质结) 器件——PIN、MIS异质结(p-GaN/i-ZnO/n-ZnO:Al、Au/MgO(SiO₂)/ZnO等) 性能改善—稳定性、效率(纳米结构&LSP的引入、外延包覆)

(二) 基于ZnO纳米薄膜的忆阻器件

材料改性—掺杂、合金化、复合体系…

结构改进—纳米结构增强电场、多层结构···(目标:转变位置的可控性)

原理探索—离子迁移扩散、原子开关、pn结空间电荷区宽度调制、界面势垒···

感谢国家863、973计划,国家基金委重点基 金等项目的大力支持!感谢研究组老师、研 究生的努力工作!

