量子材料是电、磁、光、热等各种能量形式转化的载体,是现代科技发展的基础材料之一。对于d轨道量子材料而言,强自旋-轨道耦合效应、电子关联效应及晶体场效应之间相互竞争,使其表现出丰富的新奇光电磁特性。当量子材料的厚度(维度)降低到接近单原子层极限,并以特定方式堆垛形成二维异质结时,异质界面两种材料电子云的重叠会在界面衍生出不同于上下层材料的独特的电子性质和层展效应。因此,d轨道低维量子材料可以通过单原子层晶胞之间的层间堆叠和扭转来构筑能带结构可调的异质界面,为“后摩尔时代”构筑全新原型器件提供了更多可能性。尽管异质界面上的相互作用通常都会涉及到晶格匹配、能带弯曲、电荷转移和莫尔周期势等复杂的物理化学过程,然而这些现象最终还是受到二维空间上异质界面的晶体结构及其平移和旋转等基本对称性的控制。因此,如何在众多新奇的界面电磁现象和界面二维晶格对称性之间建立桥梁,深入理解并构建材料的空间维度、界面结构与新奇性能三者之间的构效关系,是量子材材料全新物态探索取得突破的关键所在。本报告讲围绕这一科学问题和挑战,特别是d轨道低维量子材料对称性破缺与物态调控中的基本问题,介绍一些最新实验进展。